Regression by hybrid Bayesian networks: modelling landscape - socioeconomic relationships

Rosa F. Ropero1 P. A. Aguilera1
Antonio Fernández2 Rafael Rumí2

1Informatics and Environment Research Group, Department of Biology and Geology, University of Almería
2Department of Mathematics, University of Almería

Albacete, February 7-8, 2013
Motivation

Regression by hybrid BNs: modelling landscape - socioeconomic relationship

R. F. Ropero, P. A. Aguilera, A. Fernández, R. Rumí

Preliminaries

Hybrid BNs-based regression

Modelling landscape - socioeconomic relationship

Conclusions

Landscape ↔ socioeconomic
Motivation (Aguilera et al. 2011)

- Modelling environmental problems with continuous (and discrete) variables is a challenge.
- Modelling landscape - socioeconomic relationships with BNs.
- Advantages using BN-based regression.
- In Almería this study is even more interesting:
 - Varied landscape (desert/high mountains/sea, traditional crops/greenhouses, ...)
 - Changing landscape (boom of greenhouses, ...)
1 Preliminaries

2 Hybrid BNs-based regression

3 Modelling landscape - socioeconomic relationship

4 Conclusions
Preliminaries

Hybrid BNs-based regression

Modelling landscape - socioeconomic relationship

Conclusions
Hybrid Bayesian networks

Definition

A BN is called **hybrid** when continuous and discrete variables coexist simultaneously in the model.
Hybrid Bayesian networks

Definition

A BN is called **hybrid** when continuous and discrete variables coexist simultaneously in the model.

Approaches dealing with hybrid data

- Discretisation.
- Conditional Linear Gaussian (CLG) model.
- Mixtures of Truncated Exponentials (MTEs).
- Mixtures of Polynomials (MOPs).
- Mixtures of Truncated Basis Functions (MoTBFs).
Mixtures of Truncated Exponentials (MTEs)

Regression by hybrid BNs: modelling landscape - socioeconomic relationship

R. F. Ropero, P. A. Aguilera, A. Fernández, R. Rumí

Preliminaries

Hybrid BNs-based regression

Modelling landscape - socioeconomic relationship

Conclusions

Mixtures of Truncated Exponentials (MTEs)

\[f(z) = \begin{cases}
-0.0172 + 0.931e^{1.27z} & \text{if } -3 \leq z < -1 \\
0.442 - 0.0385e^{-1.64z} & \text{if } -1 \leq z < 0 \\
0.442 - 0.0385e^{1.64z} & \text{if } 0 \leq z < 1 \\
-0.0172 + 0.9314e^{-1.27z} & \text{if } 1 \leq z < 3
\end{cases} \]

\[P(Y = 1|z) = \begin{cases}
0 & \text{if } z < -5 \\
-0.0217 + 0.522e^{0.635z} & \text{if } -5 \leq z < 0 \\
1.0217 - 0.522e^{-0.635z} & \text{if } 0 \leq z \leq 5 \\
1 & \text{if } z > 5
\end{cases} \]
Contents

1 Preliminaries

2 Hybrid BNs-based regression

3 Modelling landscape - socioeconomic relationship

4 Conclusions
Regression

Assume a set of variables Y, X_1, \ldots, X_n, where Y is the dependent variable and X_i are the independent ones.

Goal

Find a model g to explain Y in terms of X_1, \ldots, X_n:

$$y = g(x_1, \ldots, x_n)$$
BN-based regression

\(g \) can be modelled by a BN: \(f(y \mid x_1, \ldots, x_n) \).

Classification

An individual with observed features \(x_1, \ldots, x_n \) will be classified as a member of class \(y^* \) obtained as:

\[
y^* = \arg \max_{y \in \Omega_Y} p(y \mid x_1, \ldots, x_n) .
\]

Regression

\(f(y \mid x_1, \ldots, x_n) \) is computed and a numerical prediction for \(Y \) is given using the expected value as follows:

\[
\hat{y} = \mathbb{E}[Y \mid x_1, \ldots, x_n] = \int_{\Omega_Y} y f(y \mid x_1, \ldots, x_n) dy
\]
Regression with a NB structure

Let Y be the **continuous** dependent variable and X_1, \ldots, X_n, the discrete/continuous independent variables.

\[
f(y \mid x_1, \ldots, x_n) \propto f(y) \times f(x_1, \ldots, x_n \mid y)
\]

\[
\propto f(y) \prod_{i=1}^{n} f(x_i \mid y),
\]
Feature selection (Morales et al. 2007)

Filter-wrapper approach

1. Features are sorted using as filter measure $I(X, Y)$:

\[
I(X, Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) \log_2 \frac{f_{XY}(x, y)}{f_X(x)f_Y(y)} \, dx \, dy
\]

2. Using that order, they are included one by one whenever it increases the accuracy of the model:

\[
rmse = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}
\]

\[
\hat{I}(X, Y) = \frac{1}{m} \sum_{i=1}^{m} \left(\log_2 f_{X|Y}(X_i \mid Y_i) - \log_2 f_X(X_i) \right)
\]
Feature selection

The variable selection is performed during learning

Sorted features by $\hat{I}(X_i, Y) : X_2, X_3, X_1, X_4$

$\text{rmse} = 0.15$

$Y \xrightarrow{\text{Add } X_3} X_2$

$\text{rmse} = 0.14$

$Y \xrightarrow{\text{Add } X_1} X_2 \xrightarrow{\text{Add } X_3} X_1$

$\text{rmse} = 0.145$

$Y \xrightarrow{\text{Add } X_4} X_2 \xrightarrow{\text{Add } X_3} X_4$

$\text{rmse} = 0.143$

$Y \xrightarrow{\text{Remove } X_1} X_2 \xrightarrow{\text{Add } X_4} X_3 \xrightarrow{\text{Remove } X_4} X_2 \xrightarrow{\text{Add } X_3} X_4$

$\text{rmse} = 0.14$

FINAL MODEL

$Y \xrightarrow{\text{Remove } X_4} X_2 \xrightarrow{\text{Add } X_3} X_2$
Contents

1. Preliminaries
2. Hybrid BNs-based regression
3. Modelling landscape - socioeconomic relationship
4. Conclusions
Study area (southeastern Spain)

- **Regions**: Poniente almeriense, Sierra de los Filabres and Alpujarra.
- **90 municipalities, 500,000 Has.**
- Landscape characterized by an **altitude gradient**.
- **Low** part: greenhouses, high population, immigration.
- **Middle-high** part: agricultural mediterranean landscape, low population, emigration, rural tourism.
Data collection

- Data per municipality in 2007.
- Sources: SIMA (Sistema de Información Multiterritorial de Andalucía) and REDIAM (Consejería de Medio Ambiente).

Landscape tendencies (3)
- Increase of scrublands.
- Agricultural mediterranean landscape.
- Native forest.

Socioeconomic variables (16)
- Total population, Aging, Natural increase, Rate of male.
- Primary/Secundary/Tertiary sector, Unemployed.
- National/Foreign emigration, National/Foreign immigration.
- Illiterate, Primary/Secondary/Higher studies.
Scenarios of change *(Schmitz et al. 2005, Aranzabal et al. 2008)*

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Variables</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive socioeconomic change</td>
<td>Foreign immigration</td>
<td>Maximum value</td>
</tr>
<tr>
<td></td>
<td>National emigration</td>
<td>+50%</td>
</tr>
<tr>
<td></td>
<td>Tertiary sector</td>
<td>+60%</td>
</tr>
<tr>
<td></td>
<td>Primary sector</td>
<td>+80%</td>
</tr>
<tr>
<td></td>
<td>Higher studies</td>
<td>+15%</td>
</tr>
<tr>
<td></td>
<td>Secondary studies</td>
<td>+30%</td>
</tr>
<tr>
<td></td>
<td>Natural increase</td>
<td>+70%</td>
</tr>
<tr>
<td></td>
<td>Aging</td>
<td>Minimum value</td>
</tr>
</tbody>
</table>
Scenarios of change (Schmitz et al. 2005, Aranzabal et al. 2008)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Variables</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive socioeconomic change</td>
<td>Foreign immigration</td>
<td>Maximum value</td>
</tr>
<tr>
<td></td>
<td>National emigration</td>
<td>+50 %</td>
</tr>
<tr>
<td></td>
<td>Tertiary sector</td>
<td>+60 %</td>
</tr>
<tr>
<td></td>
<td>Primary sector</td>
<td>+80 %</td>
</tr>
<tr>
<td></td>
<td>Higher studies</td>
<td>+15 %</td>
</tr>
<tr>
<td></td>
<td>Secondary studies</td>
<td>+30 %</td>
</tr>
<tr>
<td></td>
<td>Natural increase</td>
<td>+70 %</td>
</tr>
<tr>
<td></td>
<td>Aging</td>
<td>Minimum value</td>
</tr>
<tr>
<td>Negative socioeconomic change</td>
<td>National emigration</td>
<td>Maximum value</td>
</tr>
<tr>
<td></td>
<td>Higher studies</td>
<td>−70 %</td>
</tr>
<tr>
<td></td>
<td>Natural increase</td>
<td>Minimum value</td>
</tr>
<tr>
<td></td>
<td>Primary sector</td>
<td>−20 %</td>
</tr>
<tr>
<td></td>
<td>Tertiary sector</td>
<td>−80 %</td>
</tr>
<tr>
<td></td>
<td>Total population</td>
<td>−50 %</td>
</tr>
<tr>
<td></td>
<td>Aging</td>
<td>+80 %</td>
</tr>
<tr>
<td></td>
<td>Secondary studies</td>
<td>−40 %</td>
</tr>
<tr>
<td></td>
<td>Unemployment</td>
<td>Maximum value</td>
</tr>
</tbody>
</table>
Agricultural mediterranean landscape (AML)

Regression by hybrid BNs: modelling landscape - socioeconomic relationship

R. F. Ropero, P. A. Aguilera, A. Fernández, R. Rumí

Preliminaries
Hybrid BNs-based regression
Modelling landscape - socioeconomic relationship
Conclusions
Agricultural mediterranean landscape (AML)

Regression by hybrid BNs: modelling landscape - socioeconomic relationship

R. F. Ropero, P. A. Aguilera, A. Fernández, R. Rumí

Preliminaries
Hybrid BNs-based regression
Modelling landscape - socioeconomic relationship
Conclusions

Agricultural Mediterranean Landscape

<table>
<thead>
<tr>
<th>Probability</th>
<th>A priori</th>
<th>Positive scenario</th>
<th>Negative scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Expected value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A priori</td>
<td>21.50</td>
</tr>
<tr>
<td>Scenario +</td>
<td>15.62</td>
</tr>
<tr>
<td>Scenario -</td>
<td>29.65</td>
</tr>
</tbody>
</table>
Native forest
Native forest

Regression by hybrid BNs: modelling landscape - socioeconomic relationship

R. F. Ropero, P. A. Aguilera, A. Fernández, R. Rumí

Preliminaries

Hybrid BNs-based regression

Modelling landscape - socioeconomic relationship

Conclusions

Native forest

Natural increase

National immigration

National emigration

Primary studies

Tertiary sector

Total population

Expected value

A priori

Scenario +

Scenario -

Probability

Native forest

0.00 0.05 0.10 0.15

0 10 20 30 40 50

A priori

Positive scenario

Negative scenario

A priori 7.66

Scenario + 3.81

Scenario - 6.32
Scrubland

Regression by hybrid BNs: modelling landscape - socioeconomic relationship

R. F. Ropero, P. A. Aguilera, A. Fernández, R. Rumí

Preliminaries

Hybrid BNs-based regression

Modelling landscape - socioeconomic relationship

Conclusions
Scrubland

Regression by hybrid BNs: modelling landscape - socioeconomic relationship

R. F. Ropero, P. A. Aguilera, A. Fernández, R. Rumí

Preliminaries
Hybrid BNs-based regression
Modelling landscape - socioeconomic relationship
Conclusions

Scrubland

Aging
Unemployed
Tertiary sector
Foreign emigration
National emigration
Secondary studies
Primary studies

A priori
Positive scenario
Negative scenario

Expected value

A priori 39.62
Scenario + 26.96
Scenario - 49.98
Validation

2 approaches

- Multiple Linear Regression (MLR) included in R.
- Approach with the proposed model (BN).

\[
\text{rmse} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}
\]

- 10 fold-cross-validation is used to reduce variability.

<table>
<thead>
<tr>
<th></th>
<th>Native forest</th>
<th>AML</th>
<th>Scrubland</th>
</tr>
</thead>
<tbody>
<tr>
<td>BN</td>
<td>5.20</td>
<td>18.01</td>
<td>19.09</td>
</tr>
<tr>
<td>MLR</td>
<td>8.81</td>
<td>19.92</td>
<td>29.47</td>
</tr>
</tbody>
</table>
Contents

1 Preliminaries

2 Hybrid BNs-based regression

3 Modelling landscape - socioeconomic relationship

4 Conclusions
Concluding remarks

- The work presents MTE-based hybrid BNs as a tool for solving regression problems in environmental sciences.

<table>
<thead>
<tr>
<th>Advantages in environmental sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous and discrete variables are allowed without restriction on the structure.</td>
</tr>
<tr>
<td>Any underlying data distribution is permitted.</td>
</tr>
<tr>
<td>Probabilistic information (not only for the dependent variable).</td>
</tr>
<tr>
<td>Partial evidences.</td>
</tr>
<tr>
<td>A wider range of problems can be addressed.</td>
</tr>
</tbody>
</table>
Concluding remarks

- 3 landscape tendencies and several socioeconomic aspects have been modeled.

2 change scenarios analysed

- **Scenario +**: Traditional landscapes are replaced by touristic activities.
- **Scenario -**: It implies an increase of scrublands, and the maintenance of traditional croplands in rural areas.

Future works

Data dependence in environmental problems.
Thanks for your attention