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Abstract

Parsimonious Markov models have been recently developed as a generalization of variable
order Markov models. Many practical applications involve a setting with latent variables,
with a common example being mixture models. Here, we propose a Bayesian model
averaging approach for learning mixtures of parsimonious Markov models that is based on
Gibbs sampling. The challenging problem is sampling one out of a large number of model
structures. We solve it by an efficient dynamic programming algorithm. We apply the
resulting Gibbs sampling algorithm to splice site classification, an important problem from
computational biology, and find the Bayesian approach to be superior to the non-Bayesian
classification.

1 Introduction

Assigning data points to classes based on their
similarity to labeled training data is a perva-
sive task in almost all fields of science. One
generally proceeds by assigning a probability
to any observation X under the hypothesis
that it belongs to some class k. It is custom-
ary to use the predictive probabilities P (X|Yk),
which take different forms in the non-Bayesian
and Bayesian settings, respectively. Both ap-
proaches assume X and training data Yk to be
generated from the same parametric statistical
model M. The non-Bayesian approach maps
Yk onto a unique parameter value by means of
an estimator (ML, MAP, MP), and recycles this
value for computing the predictive distribution

P1(X|Yk) = P (X|θ̂M(Yk)), (1)

whereas the Bayesian classification relies on the
predictive distribution P2 defined by the follow-
ing integral over the parameter space:

P2(X|Yk) =
∫
P (X|θM)P (θM|Yk)dθM. (2)

Here, the term Bayesian refers to the opera-
tion of averaging contributions from the whole

model, as opposed to the estimation of a single
distribution that is further used for prediction
purposes. The probability assignments P1 and
P2 are not completely unrelated: With θ̂M(Yk)
being the mode of one term in the integrand in
Equation 2, P1 can be understood as an approx-
imation of P2, where only the parameter value
contributing most is taken in consideration. P2,
on the other hand, aggregates the contributions
of all parameter values according to the support
they provide to the training data Yk.

In many applications, there is also uncer-
tainty about the model M. Viewing M as
a discrete-valued component of the parameter
space, P1 and P2 are paralleled by P3 and P4,
respectively, in this setting:

P3(X|Yk) = P (X|θ̂M̂(Yk)
(Yk)), (3)

which includes a model selection step for com-
puting M̂(Yk), and

P4(X|Yk) =
∑
M
P (M) (4)

·
∫
P (X|θM)P (θM|Yk)dθM,

for the Bayesian classification, which yields a
Bayesian model averaging task.
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Figure 1: Example PCT of depth 2 over
DNA alphabet. It encodes the partitioning
of all 16 possible sequences into the subsets
{AA},{CA,GA},{TA},{AC,AG,AT,GC,GG,GT}, and
{CC,CG,CT,TC,TG,TT}.

In both cases, the choice of an appropriate set
of candidate models is crucial. Here, we focus on
parsimonious Markov models, which have been
introduced by Bourguignon (2008) as an exten-
sion of variable order Markov models (Rissanen,
1983; Bühlmann and Wyner, 1999). They use
parsimonious context trees (PCTs), which dif-
fer from traditional context trees in two aspects:
(i) a PCT is a balanced tree, i.e. each leaf has
the same depth, and (ii) each child node rep-
resents an arbitrary subset of the alphabet A,
with the additional constraint that sibling nodes
form together a partition of A. An example
PCT, which forms a partition of strings that
cannot be represented by a traditional context
tree, is shown in Figure 1.

Many practical applications involve a set-
ting with latent variables or incomplete train-
ing data, for example Hidden Markov Models
(Rabiner, 1989) or mixture of trees (Meila and
Jordan, 2000). In such cases, classification is
based on the incomplete versions of P1 to P4,
i.e. averages thereof against the latent variables.
The associated enumeration of all realizations of
the latent variables cannot, in general, be per-
formed in an exact yet computationally inex-
pensive way. As an alternative, the EM algo-
rithm (Dempster et al., 1977) is often used to
derive an approximation of θ̂M. In the Bayesian
setting, another option is offered by algorithms
that generate samples drawn (at least approx-
imately) from the posterior distribution of the
parameter, P (θM|Yk). Predictive probabilities

such as P2 and P4 can then be derived by substi-
tuting a discrete approximation of the integral
using the generated parameter values.

One of the simplest models that uses latent
variables is a C-component mixture model. A
recent algorithm for learning mixtures of in-
homogeneous parsimonious Markov models is
based on the MAP principle and thus uses a
modified EM algorithm (Gohr et al., 2012).
Here, we derive a Gibbs sampler for sampling
from the posterior distribution of mixtures of in-
homogeneous parsimonious Markov models. We
study the convergence behavior of the algorithm
and evaluate its classification performance com-
pared to the corresponding EM algorithm.

2 Model and prior

The data are symbolic sequences of fixed length
L over the alphabet A. We denote a single
symbol by X, a sequence of length L by ~X =
(X1, . . . , XL) and a data set of N sequences by
X = ( ~X1, . . . , ~XN ).

2.1 Parsimonious Markov model

Here, we focus on inhomogeneous parsimonious
Markov models (parsMMs) of order D, which
use potentially different parsimonious context
trees (PCTs) for each position. A PCT is a
rooted, balanced tree, which we subsequently
denote by τ . T AD is the set of all possible trees
for a given alphabet A and depth D. Each node
of a PCT is labeled with a non-empty subset of
A, except for the root, which is labeled by the
empty subset. The set of labels of all children
of an arbitrary inner node forms a partition of
A. Starting from a leaf, building the cartesian
product of all subsets found on the path to the
root defines a set of sequences, which is the con-
text encoded by that leaf.

The example PCT in Figure 1 encodes the
contexts {A} × {A}, {C,G} × {A}, {T} × {A},
{A,G} × {C,G, T}, and {C, T} × {C,G, T}.

A parsimonious Markov model of order D for
a sequence ~X of length L involves exactly L
PCTs, denoted by ~τ = (τ1, . . . , τL). For the
ease of presentation, we exclude from the fol-
lowing discussion the first D PCTs, which have
an increasing maximal depth of 0, . . . , D−1. We
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denote a single context as w, and all contexts
represented by a specific parsimonious context
tree τ by Cτ . For a given PCT τ , we denote
the conditional probability of observing a sym-
bol a ∈ A, given that the concatenation of
the preceding D symbols is in w, as θτwa. We
denote all parameters of a single position in
the parsMM by Θ =

(
τ, (~θτ

′
)τ ′∈T AD

)
, using the

product space formulation of Carlin and Chib
(1995) in order to ensure a fixed dimensional-
ity of the parameter space. We further combine
the parameters of all positions in the parsMM
by ~Θ = (Θ1, . . . ,ΘL). The likelihood function
of a parsMM is given as

P (X|~Θ) =
L∏
`=1

∏
w∈Cτ`

∏
a∈A

(
θτ``wa

)N`wa , (5)

where N`wa is the number of occurrences of
symbol a at position ` in all sequences in data
set X where the symbols from position `−D to
`− 1 are an element of w. We define a prior for
the parsimonious Markov model by

P (~Θ) = P (~τ)
∏̀
`=1

∏
τ ′∈T A`,D

∏
w∈Cτ ′

P (~θτ
′
`w) (6)

where P (~θτ
′
`w) is a Dirichlet distribution with hy-

perparameters ~ατ
′
`w. For the case studies in this

work, we further restrict the parameter prior
to a symmetric Dirichlet distribution. Follow-
ing the equivalent sample size (ESS) concept
(Heckerman et al., 1995), we obtain a natural
computation of the pseudocounts from the ESS
that is inspired by Bayesian networks, namely
ατ`wa = ESS|w|

|A|D+1 . We specify the structure prior
over all L PCTs in the model by

P (~τ) ∝
L∏
`=1

κ|Cτ` |. (7)

It depends on one hyperparameter κ ∈ (0,∞),
which can be used to influence the number of
leaves and thus the complexity of the model,
interpolating between the two special cases:
When κ→ +∞, the maximal tree, which repre-
sents a full order Markov model, receives a prior

probability of one. Conversely, when if κ → 0,
only the minimal tree, which represents an in-
dependence model, receives prior support.

2.2 Mixture model

We consider a C-component mixture model as a
typical instance of a model with latent variables.
The assignment of each of the N sequences to
one of the C components is specified by the
latent vector ~u = (u1, . . . , uN ) ∈ {1, . . . , C}N .
Each component of the mixture model is an in-
homogeneous parsimonious Markov model, so
the complete set of parameters is denoted by
Θ = (~π, ~Θ1, . . . , ~ΘC), where ~π = (π1, . . . , πC),
and πc contains the probability of the c-th mix-
ture component. The likelihood of the mixture
model is thus given as

P (X, ~u|Θ) = P (X|~u,Θ)P (~u|Θ), (8)

where

P (~u|Θ) =
N∏
i=1

πui , (9)

and

P (X|~u,Θ) =
C∏
c=1

P (X{~u=c}|~Θc) (10)

with
X{~u=c} = (Xi)i|ui=c (11)

denoting all sequences that are assigned to com-
ponent c by the latent variables ~u. The prior of
the full mixture model factorizes as

P (Θ) =
C∏
c=1

P (~Θc). (12)

For the sake of simplicity, we set ~π in this work
externally to a uniform distribution.

3 Gibbs sampling

We now shall generate a sample from the dis-
tribution P (Θ, ~u|X), from which P (Θ|X) for
use in Equation 4 can be further derived by
marginalization.

Sampling from P (Θ, ~u|X) directly is in-
tractable, but approximate sampling techniques
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∀Cc=1∀L`=1 : sample τ
(t)
c` from P (τc`|~u(t−1),X) (13)

∀Ci=1∀L`=1∀w∈Cτc` : sample θτc`c`w
(t) from P (θτc`c`w|τ (t)

c` , ~u
(t−1),X) (14)

∀Ni=1 : sample u
(t)
i from P (ui|Θ(t), ~Xi) (15)

Figure 2: Sampling steps for the t-th iteration of the Gibbs sampler.

are available. We focus here on Gibbs sampling
(Geman and Geman, 1984; Casella and George,
1992), where each parameter is iteratively up-
dated using its conditional distribution given
the current value of the other parameters. Sam-
ples form a realization of a Markov chain, whose
stationary distribution is the posterior.

We sample in the t-th iteration Θ(t) from
P (Θ|~u(t−1),X) and ~u(t) from P (~u|Θ(t),X). The
conditional probability of the parameters given
the latent variables decomposes to

P (Θ|~u(t−1),X) =
C∏
c=1

L∏
`=1

P (τc`, ~θc`|~u(t−1),X).

(16)
For each compontent c and each position

` (and thus omitting here both indices for
the sake of convenience), we use the idea
of variable grouping (Liu, 2001) and sam-
ple (τ, ~θτ )(t) jointly from P (τ, ~θτ |~u(t−1),X) in-
stead of sampling from each single conditional
distribution separately. This is achieved in
a hierarchical manner, by decomposing the
joint conditional probability distribution into
P (τ |~u(t−1),X)P (~θτ |τ, ~u(t−1),X) . We first sam-
ple τ (t) w.r.t. its conditional distribution given
(~u(t−1),X), and then ~θτ

(t)
from its full condi-

tional distribution, P (~θτ |τ (t), ~u(t−1),X), under
which the components of ~θτ are independent.
Similarly, the components of ~u are conditionally
independent given the other parameters and the
data.

As a result, we obtain the sampling scheme
that is shown in Figure 2. The remaining task
is to efficiently sample from the specified con-
ditional distributions, which we discuss in the
following sections. Whereas sampling of latent
variables and probability parameters are com-

paratively simple, the particular challenge lies
in the sampling of the PCTs.

3.1 Structure sampling

In this section, we focus on the sampling of a
PCT structure in order to perform the sampling
step 13. The probability of a particular tree
structure given data (step 13) is

P (τc`|~u,X) ∝
∏

w∈Cτc`
κ
B( ~Nc`w + ~αc`w)
B(~αc`w)

, (17)

where B denotes the multinomial beta-function.
Hence, the probability decomposes into a prod-
uct of scores for each context, i.e. leaf scores
for each leaf in the PCT. Each leaf score is it-
self a marginal likelihood for the particular con-
text multiplied with the structure prior hyper-
parameter κ. While the probability for a given
tree can be computed easily, the challenge lies in
sampling one out of a super-exponential num-
ber (with respect to model order and alphabet
size) of possible PCTs, without computing the
probability for every single tree explicitely.

To this extent, we propose a dynamic pro-
gramming algorithm, which is inspired by that
of Bourguignon (2008) and Volf and Willems
(1994) for finding the PCT or CT that maxi-
mizes a given score.

The algorithm runs on a specific data struc-
ture, the extended tree, of which one subtree is
shown in Figure 3. In contrast to a PCT, the
children of a node of an extended tree do not
form a partition of A, but rather encompass all
elements of P(A) \ {∅}.

We construct top-down an extended tree of
depth D, and then sample in a bottom-up
traversal a regular PCT by taking – for each
node n – one out of two possible actions:
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Figure 3: Extended tree. The picture depicts the structure of an arbitrary inner node (labeled
with X) and its children in the extended tree over a four letter alphabet. The labels of all children
of a node form the power set of A, with the exception of the empty set.

(i) If n is a leaf (representing context w), we

compute the score κB( ~Nc`w+~αc`w)
B(~αc`w) , and assign it

to n.
(ii) If n is an inner node, we first compute

the probability of each valid choice of children
of n, where a valid choice is a set of children,
whose labels form a partition of A and the score
of a valid choice is simply the product of the
scores of the children contained in it. Next, one
valid choice is sampled according to the com-
puted probability distribution. The probability
of this sampled set of children becomes the score
of n. The remaining children of n, which do not
belong to the sampled set, and all subtrees be-
low are discarded. Hence n becomes the root of
a subtree that satisfies the characteristics of a
PCT and has a score assigned to it.

We obtain a complete PCT, once we have
sampled a valid choice of children of the root
of the extended tree.

The algorithm samples correctly from the
posterior distribution for the following reasons:
First, when sampling the children of a partic-
ular node, the scores of all potential children
are already available. In step (ii), we can safely
assume that for each inner node n, each child
(Figure 3) is either a leaf, in which case we have
obtained its score by step (i), or the root of a
subtree that already satisfies the characteristics
of a PCT and has a score assigned to it. Sec-
ond, the subtree rooted at an arbitrary node n
and subtrees rooted at the siblings of n are con-
ditionally independent given the labels on the
path from n to the global root of the PCT. This
information is available at any time due to the
top-down construction of the extended tree.

The time complexity of the algorithm is given
by the number of valid choices multiplied by

the number of inner nodes in the extended tree,
more precisely O

(
B|A|

(
2|A| − 1

)D−1
)

, where
B|A| is the Bell number (Rota, 1964).

3.2 Parameters

The probability of the conditional probability
parameters of a given context of a given PCT
structure (step 14) is a Dirichlet distribution
with the hyperparameters being a sum of counts
and pseudocounts, that is,

P (θτc`c`w|τc`, ~u,X) = Dir(θτc`c`w| ~Nc`w+~αc`w). (18)

3.3 Latent variables

The conditional probability distribution of the
latent variables (step 15) is merely a fraction of
likelihood values:

P (ui|Θ, ~Xi) =
πuiP ( ~Xi|~Θui)∑C
c=1 πcP ( ~Xi|~Θc)

(19)

It is noteworthy that given the parameters and
the data, the components of ~u are mutually in-
dependent. In addition, the conditional distri-
bution of each component ui depends on the
data only through the sequence Xi.

4 Case studies

In order to evaluate the method on real world
data, we apply it to the problem of splice site
classification, which is an important task in
computational biology. Splice sites are short
DNA sequences that contain a GT dinucleotide.
However, not all sequences containing a GT din-
ucleotide are functional splice sites. The statis-
tical problem is to distinguish functional splice
sites from non splice sites by modeling the vari-
able nucleotides left and right of the GT.
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Table 1: Data sets used for the classification
experiment, consisting of experimentally veri-
fied positive and negative data.

training test
splice donor sites pos train pos test
non splice sites neg train neg test

We use the splice donor site data sets of
Yeo and Burge (2004), which consist of exper-
imentally verified splice donor sites and non
splice sites (Table 1). The conserved GT dinu-
cleotide has been removed already, the remain-
ing sequences of length of L = 7 over A ∈
{A,C,G, T} are diverse, which makes the clas-
sification problem challenging (Yeo and Burge,
2004). In the following, we use a mixture of
C = 2 parsMMs of depth D = 2 with an
ESS = 16 for each component for learning from
the functional splice sites.

4.1 Convergence

Gibbs sampling, like any MCMC method, sam-
ples from the target distribution only asymp-
totically. It is therefore important to study
the convergence rate of the algorithm in or-
der to control the quality of the approximation
brought by the sample. In practice, a number of
first samples is generated but discarded, thereby
skipping the burn-in phase of the sampler. We
investigate the convergence for a data set of size
N = 500, since we use data sets of the same
size for a classification study in section 4.2. Af-
ter initializing each latent variable by sampling
from the uniform distribution (0.5, 0.5), we per-
form 104 iterations of the Gibbs sampler. In
each iteration step, we store the sampled value
of each of the 500 latent variables. In absence
of a simple notion of correlation among PCTs,
we focus here on the number of leaves of the
PCTs. The tree of the first position of both
components can be neglected, since it always
consists of one leaf. So we store only the num-
ber of leaves of each PCT at position 2-7 in
both components, yielding 12 additional vari-
ables per iteration, which makes 512 variables
in total. Since the space of actively used proba-

bility parameters changes from iteration step to
iteration step, we do not measure their conver-
gence behavior.

Next, we compute the autocorrelation func-
tion for each of the 512 variables with lags of 1 to
500 from the 104 iterations. We repeat the pro-
cess 102 times with different initializations and
average the autocorrelation coefficients for each
variable. We project the results to six curves in
the following way. First, we investige the latent
variables and the PCT complexity separately.
Second, we plot for each lag the (i) maximum,
(ii) mean, and (iii) median of the absolute auto-
correlation, which is shown in Figure 4. In both
cases, we observe an approximately exponential
decay of the autocorrelation up to a lag of ap-
proximately 150. For larger lags, it differs only
slighty, even though there is a small increase
between lag 250 and 350. We finally conclude
that 200 iteration steps is the minimal length of
the burn-in phase, since all samples before that
are still correlated to the random initialization.
For the following classification studies, we use a
burn-in phase of 1000 iteration steps.

4.2 Classification

After having evaluated convergence behavior of
the Gibbs sampling algorithm, we study how
well it performs in practice compared to an EM
algorithm when facing the task of classification.
We intent to classify splice donor sites (positive)
against non splice sites (negatives). To this ex-
tend, we use an independence model for the neg-
ative class. In the following study we use all four
data sets that are depicted in Table 1. All data
sets except pos train are kept fixed during the
entire experiment. pos train, which we utilize
to train the mixture model, is a random sample
of 500 sequences from the original training data
set of Yeo and Burge (2004).

Using these four data sets, we train a classi-
fier by (a) training an independence model on
neg train and (b) training a two-component
mixture of parsimonious Markov models on
pos train by (i) Gibbs sampling and (ii) the
EM algorithm. In case of (i), we obtain a series
of 103 parameter sets that are samples from the
posterior distribution after the burn-in phase,
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(a) Hidden variables
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(b) Number of Leaves

Figure 4: Autocorrelation coefficients of latent variables and number of leaves of the parsi-
monious context trees in logarithmic scale. Figure 4a depicts for each lag the mean, median and
maximum of the autocorrelation over the 500 latent variables. Figure 4a depicts the same statis-
tics of the autocorrelation of the PCT leaf number over the 12 nontrivial PCTs in the mixture
model. In all cases, the autocorrelation shows a nearly exponential decay with a decay constant of
approximately 1.7 until it remains stable at low values at lag 150-200.

where in only every hundreth iteration a param-
eter set is stored. We start the Gibbs sampler
ten times and use all the 104 parameter sets
for a classification according to Equation 4. In
case of (ii), we run the EM algorithm of Gohr
et al. (2012) until the difference in the posterior
is smaller than 10−6. We repeat the procedure
ten times with different initializations, and use
the parameter set from the run that yields the
highest posterior in order to classify according
to Equation 3. In both cases, we classify all se-
quences in pos test and neg test and compute
the area under the ROC curve (AUC). We re-
peat the entire procedure with 20 different sam-
ples of size 500 from the training data set, and
compute the mean AUC and its standard error.

The classification performance might be
heavily influenced by the model complexity. So
we repeat the study with different values of the
structure prior constant κ. By varying κ from
10−50 to 1010, we cover the whole scale of com-
plexity that a parsMM(2) can represent, from

independence model, obtained when all PCTs
contain only one leaf, to a second order inhomo-
geneous Markov model, obtained when all PCTs
have the maximal number of leaves.

The results are shown in Figure 5. As we ex-
pected, the classification performance depends
heavily on the complexity. However, for all
levels of complexity, the Bayesian classification
based on Gibbs sampling outperforms the non-
Bayesian classification that uses the EM algo-
rithm by a wide margin. Moreover, the stan-
dard errors are substantially smaller, indicating
that the Bayesian classification also yields more
stable results.

4.3 Conclusions

We dervived a Gibbs sampling algorithm that
samples PCT structures and corresponding
probability parameters from the posterior dis-
tribution of parsimonious Markov models in a
setting with latent variables. We studied the
convergence of the algorithm and found 1000
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Figure 5: Mean AUC of a repeated holdout
classification experiment for Gibbs sampler and
EM algorithm for different model complexities.
Each error bar shows the double standard error.
Gibbs sampler outperforms EM algorithm for
all possible model complexities.

sampling steps to be a safe estimation of the
length of the burn-in phase. We applied the al-
gorithm to splice site classification and observed
the Gibbs sampler outperforming the EM al-
gorithm for every model complexity. These
results suggest that the Bayesian learning ap-
proach might also be useful when parsimonious
Markov models are combined with other models
that also involve latent variables.
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