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Abstract

Given data, not knowing the distribution, we wish to construct a forest (Markov graph)
relative to which the description length is minimized, connecting edges with larger esti-
mated mutual information of each pair of random variables step by step (the Chow-Liu
algorithm) to balance simplicity of the forest and fitness of the data, where the random
variables are not to be either discrete or continuous. To this end, we construct a Bayesian
measure over the data sequences, and propose the Bayesian estimator of mutual infor-
mation. The Bayesian measure is partially from (Ryabko 2009), but our version can deal
with any random variable even if no density function exists. We show that the estimator is
consistent, and it is considered to be more robust than the existing approaches because it
does not estimate one specific histogram from data. Numerical experiments demonstrate
that the proposed method works efficiently enough to deal with practical problems.

1 Introduction

In many applications of statistical machine
learning such as data mining and pattern recog-
nition, we often need to capture the dependen-
cies among random variables from data. The
obtained relation can be usually expressed by
graphical models such as Markov networks and
Bayesian networks (Pearl 1988). However, as
the number of random variables increases, it is
hard to obtain the exact estimation because its
computation increases exponentially.

In this paper, we restrict the distribution of
random variables expressed by a Markov graph
to a limited form of distributions expressed by
a tree (we identify the random variables with
the vertexes in the graph). If the distribution is
known, such an approximation can be executed
via the Chow-Liu algorithm (Chow and Liu,
1968) which continues to connect a pair of ver-
texes with the largest mutual information if the
connection does not make any loop (otherwise,
the pair will not be considered for an edge in
the future) until no candidate exists. Although
the search is done in a top down manner, it is
guaranteed that the resulting tree expresses a
distribution such that the K-L divergence from

the true distribution is minimized (Section 2.1).
In our problem, only the data is available

while the true distribution is not known. Given
n examples consisting of attribute values, a
naive way to construct a distribution expressing
a tree is to maximum likelihood estimate the
values of mutual information based the exam-
ples (Section 2.2). On the other hand, (Suzuki,
1993) considered to minimize the description
length rather than the K-L divergence by esti-
mating each mutual information in a Bayesian
manner: construct measures RnX , R

n
Y , R

n
XY over

X n, Yn, X n × Yn, where X , Y are the ranges
of random variables X,Y . Then, the Bayesian

estimator is expressed by
1
n

log
RnXY (xn, yn)
RnX(xn)RnY (yn)

for given examples (xn, yn) ∈ X n × Yn, reflect-
ing simplicity of each forest as well as the likeli-
hood of the examples to the tree (Section 2.3).

The main purpose of this paper is to extend
the Chow-Liu algorithm so that it can deal with
arbitrary random variables: the existing meth-
ods deal with only random variables taking val-
ues in finite sets. Suppose that all the variables
are continuous and a simultaneous density func-
tion exists. Then, constructing a kernel function
to which the training data fit may show better
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performance in some cases. However, in reality,
in any data base, some attributes are discrete,
and others are continuous. So, assuming only
continuous variables would be too restrictive for
the multivariate case. We do not assume that
the random variables are either discrete or con-
tinuous. To this end, we need to extend the no-
tion of description length and Bayesian estima-
tors of mutual information. We require such a
Bayesian estimator to be (strongly) consistent,
i.e., the estimator should converge to the true
one as n→∞ with probability one.

There are many ways to estimate mutual in-
formation. Most conventional approaches were
to quantize the ranges X ,Y for estimation and
to increase the number of bins in the his-
togram as the sample size n grows: (Darbel-
lay and Vajda 1999) considered to update the
bins adaptively based on the samples obtained
thus far (strong consistency was not proved for
the method); (Wang et al 2005) applied a simi-
lar idea to estimation of Kullback-Leibler diver-
gence; and recently (Silva and Narayanan 2010)
obtained a consistent estimator of mutual infor-
mation using a similar but more general princi-
ple.

We construct a measure gn over X n that is

universal in the sense
1
n

log
fnX(xn)
gnX(xn)

diminishes

with probability as one n→∞ for any fnX . The
idea is to prepare a nested sequence {Ak} of
histograms and to estimate the density function
fnk (xn) by gnk (xn) for each histogram Ak, assum-
ing that the density function fX exists for the
random variable X. Then, we mix them with
weights {wk} such that

∑∞
k=1wk = 1, wk > 0 to

obtain the value gnX(xn) =
∑∞

k=1wkg
n
k (xn). For

the measure, (Ryabko 2009) proved universality
for any fX such that h(fk)→ h(fX) as k →∞
(Section 3.2).

We extend the universal measure gn so that
the random variables can be either discrete or
continuous. The basic idea is to replace the
Lebesgue measure λ with another supporting
measure η if no density function exists for the
random variable X. In particular, if X is finite,
the gnX reduces to RnX by choosing an appropri-
ate η, as shown in Section 3.3.

The proposed extended Bayesian estima-

tor is expressed by
1
n

log
gnXY (xn, yn)
gnX(xn)gnY (yn)

, where

gnX , g
n
Y , g

n
XY are universal density functions with

respect to η 6= λ. We show that the estima-
tor actually converges to the mutual informa-
tion with probability one as n → ∞ (Section
4.1).

There are many consistent estimators of mu-
tual information. The proposed Bayesian esti-
mator has several merit over them. For exam-
ple, by maximizing it for each step, the associate
description length assuming the graph (V,E) to
be a forest will be minimized among E (Section
4.2).

In the last section (Section 5), we list other
merits of the Bayesian estimator and state fu-
ture works.

2 The Chow-Liu Algorithm

2.1 The Original Version

Let V be a finite set, and E a subset of E :=
{{i, j} ⊆ V |i 6= j}. In this paper, we say
such a pair (V,E) to be a graph. The se-
quences (i0, · · · , im), (im, · · · , i0) ∈ V m+1 are
said to be a pair of paths connecting {i0, im} of
length m in (V,E) if i0, · · · , im are different and
{i0, i1}, · · · , {im−1, im} ∈ E. We say the graph
(V,E) is a forest if a pair of paths connecting
each element in E is unique (if it exists), and
a tree if there exists a unique path connecting
each element in E .

In this paper, we consider the following algo-
rithm for graphs: given {wi,j}{i,j}∈E such that
wi,j ≥ 0, wi,j = wj,i, it outputs a tree maxi-
mizing

∑
{i,j}∈E wi,j among graphs (V,E) that

express trees (Kruskal’s algorithm, Aho 1974):

1. E ← {{i, j}|i, j ∈ V, i 6= j}

2. E ← {}

3. while(E 6= φ) for {i, j} ∈ E maximizing wi,j

(a) E ← E\{{i, j}}
(b) (V,E ∪ {{i, j}}) is a forest =⇒ E ←

E ∪ {{i, j}}
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If the initial E is replaced by {{i, j}|i, j ∈ V, i 6=
j, wi,j > 0}, then the resulting graph is a for-
est rather than a tree (the generalized Kruskal
algorithm).

Example 1. Suppose that the values of
{wi,j}{i,j}∈E are given in the table below. The
largest value in the table is twelve for (i, j) =
(1, 2), so we connect them first. The second
largest is ten for (i, j) = (1, 3), so we connect
them. The third largest is eight for (i, j) =
(2, 3), but connecting them makes a loop, so
we do not connect them. The fourth largest
is six for (i, j) = (1, 4), so we connect them.
But, we cannot connect any further for the rest
(i, j) = (2, 4), (3, 4).

i 1 1 2 1 2 3
j 2 3 3 4 4 4
wi,j 12 10 8 6 4 2

m m
m m
2 4

1 3

m m
m m
2 4

1 3

m m
m m
2 4

1 3

m m
m m
2 4

1 3

@
@

Let X(1), · · · , X(N) be random variables that
take values in finite sets X (1), · · · ,X (N), re-
spectively. Let P1,··· ,N (x(1), · · · , x(N)), Pi(x(i)),
and Pi,j(x(i), x(j)) be the probabilities of
(X(1), · · · , X(N)) = (x(1), · · · , x(N)) ∈ X (1) ×
· · · × X (N), X(i) = x(i) ∈ X (i), and
(X(i), X(j)) = (x(i), x(j)) ∈ X (i) × X (j), respec-
tively. Also, let H(i), I(i, j), and H(1, · · · , N)
be the entropy of X(i), the mutual information
of {X(i), X(j)}, and the simultaneous entropy of
{X(1), · · · , X(N)}, respectively.

Let V := {1, · · · , N}, and E ⊆ E = {{i, j} ⊆
V |i 6= j}. Assuming (V,E) is a tree, we iden-
tify V with {X(1), · · · , X(N)} to approximate
P1,··· ,N (x(1), · · · , x(N))by

Q1,··· ,N (x(1), · · · , x(N)) =

∏
{i,j}∈E Pi,j(x

(i), x(j))∏
i∈V Pi(x(i))di−1

(Dendroid distribution), where di := |{j ∈

V |{i, j} ∈ E}|1.
Suppose that we rearrange the indexes

1, · · · , N so that i ≤ j if path (1, · · · , i, · · · , j)
exists. Then, for each j = 2, · · · , N , the i such
that i < j and {i, j} ∈ E is unique:

Q1,··· ,N (x(1), · · · , x(N))

= P1(x(1))
∏

{i,j}∈E,i<j

Pi,j(x(i), x(j))
Pi(x(i))

.

In 1968, Chow and Liu showed that if we ap-
ply Kruskal’s algorithm with weights wi,j :=
I(i, j), then, the resulting tree minimizes the
Kullback-Leibler divergence

D(P1,··· ,N ||Q1,··· ,N )

=
∑
i∈V

H(i)−H(1, · · · , N)−
∑
{i,j}∈E

I(i, j)

depends only on E in the last term.

2.2 The Chow-Liu Algorithm based on
ML Estimation

Suppose that xn := {(x(1)
i , · · · , x(N)

i )}ni=1 ∈
(
∏N
j=1X (j))n have been emitted i.i.d.

by P1,··· ,N . Let c1,··· ,N (x(1), · · · , x(N)),
ci,j(x(i), x(j)), and ci(x(i)) be the num-
bers of occurrences of (X(1), · · · , X(N)) =
(x(1), · · · , x(N)) ∈ (X (1) × · · · × X (N)),
(X(i), X(j)) = (x(i), x(j)) ∈ X (i) × X (j), and
X(i) = x(i) ∈ X (i), in xn, respectively. If
we divide them by n, we obtain the values
of P̂1,··· ,N (x(1), · · · , x(N)), P̂i,j(x(i), x(j)), and
P̂i(x(i)), respectively.

If we define Q̂1,··· ,N , Ĥ(i), Ĥ(1, · · · , N),
Î(i, j) in terms of P̂1,··· ,N , P̂i,j , P̂i (the maximum
likelihood estimators), we obtain a tree mini-
mizing

D(P̂1,··· ,N ||Q̂1,··· ,N )

=
∑
i∈V

Ĥ(i)− Ĥ(1, · · · , n)−
∑
{i,j}∈E

Î(i, j)

2.3 The Chow-Liu Algorithm based on
the MDL

Let Rn(i) and Rn(i, j) be measures over (X (i))n

such that
∑
Rn(i) ≤ 1 and over (X (i) × X (j))n

1|S| denotes the cardinality of set S.
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such that
∑
Rn(i, j) ≤ 1, respectively. Then, if

we define the measure over (X (1)×· · ·×X (N))n

by

Rn(1, · · · , N |E) :=

∏
{i,j}∈E R

n(i, j)∏
i∈V Rn(i)di−1

=
∏
{i,j}∈E

Rn(i, j)
Rn(i)Rn(j)

∏
i∈V

Rn(i),

then the Chow-Liu algorithm maximizing the
Bayesian estimator

J(i, j) :=
1
n

log
Rn(i, j)

Rn(i)Rn(j)
(1)

in each step minimizes the associated descrip-
tion length (Rissanen 1978)

L(xn|E) := − logRn(1, · · · , N |E)

= −
∑
i∈V

logRn(i)−
∑
{i,j}∈E

log
Rn(i, j)

Rn(i)Rn(j)
.

However, the E minimizing the description
length L(xn|E) may not converge to the true E
as n → ∞. In fact, for example, if the values
of Rn(i) and Rn(i, j) are uniform and do not
depend on xn, the quantity L(xn|E) does not
give any information to estimate E, even if we
properly specify the prior probability P (E) over
the subsets of E .

Hereafter, for simplicity, we assume that the
prior probability P (E) is uniform, so that, given
xn, we evaluate (V,E) only by L(xn|E) rather
than by − logP (E) + L(xn|E).

On the other hand, if we apply the
Krichevsky-Trofimov estimator (Krichevsky
and Trofimov, 1981) such as

Rn(i) :=
Γ(n+ α(i)a)Γ(a)α

(i)

Γ(α(i)a)
∏
x(i)∈X (i) Γ(ci[x(i)] + a)

(2)

Rn(i, j)

:= {Γ(n+ α(i)α(j)a)Γ(a)α
(i)α(j)}/{Γ(α(i)α(j)a)∏

x(i)∈X (i),x(j)∈X (j)

Γ(ci,j [x(i), x(j)] + a)} ,

with parameter a = 1/2, we obtain2

− logRn(i) ≈ nĤ(i) +
α(i) − 1

2
log n ,

− logRn(i, j) ≈ nĤ(i, j) +
α(i)α(j) − 1

2
log n ,

log
Rn(i, j)

Rn(i)Rn(j)
≈ nÎ(i, j)−(α(i) − 1)(α(j) − 1)

2
log n ,

and thus

L(xn|E) ≈ n
∑
i∈V
{Ĥ(i) +

α(i) − 1
2n

log n}

−n
∑
{i,j}∈E

{Î(i, j)− 1
2n

(α(i) − 1)(α(j) − 1) log n} .

Since
1
n

logRn(i) → H(i) and
1
n

logRn(i, j) →
H(i, j) , with probability one as n→∞, we find
that J(i, j) is a consistent estimator of I(i, j):

J(i, j) ≈ Î(i, j)− 1
2n

(α(i) − 1)(α(j) − 1) log n

(3)
→ I(i, j) ,

so that the E minimizing L(xn|E) converges to
the true E as n→∞ with probability one.

Notice that the resulting wi,j := J(i, j) could
be negative, and the resulting graph (V,E) is a
forest rather than a tree if we apply the gener-
alized Kruskal algorithm. J. Suzuki (1993) pro-
posed to apply J(i, j) in (3) rather than Î(i, j)
to compare in each step to balance simplicity of
the (V,E) and fitness of the xn to (V,E). On
the other hand, the method based on ML es-
timation considers only fitness to the xn, and
eventually over-fitting occurs although the ML
estimator is consistent for large n.

3 Universal Measure and
Description Length

3.1 Universal Coding for Finite Sources

Suppose that a sequence of random variables
{Xi}ni=1 are emitted i.i.d. by probability

2an ≈ bn denotes an − bn converges to a constant as
n→∞.
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pn(xn) =
∏n
i=1 p(xi) for xn = (x1, · · · , xn)

with entropy H(p) :=
∑
x∈A
−p(x) log p(x), where

A is a finite set in which each Xi takes val-
ues. Then, there exists qn (see (2)) such that∑
xn∈An

qn(xn) ≤ 1, and − 1
n

log qn(xn) → H(p)

for any p with probability one as n → ∞. For
example,

qn(xn) :=

Γ(
m

2
)
∏
a∈A

Γ(cn[a] +
1
2

)

Γ(n+
m

2
)Γ(

1
2

)m
,

with m := |A| (cardinality of A) satisfies such a
property (Cover 1995), where cn[a] is the num-
ber of occurrences of a ∈ A in xn ∈ An, and Γ
is the gamma function. We also notice from
the Shannon-McMillan-Breiman theorem that
− 1
n

log pn(xn) → H(p) for any p, which can be
also obtained by the strong law of large num-
bers:

− 1
n

log pn(xn) =
1
n

n∑
i=1

− log p(xi)

({− log p(Xi)}ni=1 are independent random vari-
ables). Thus, we have

Proposition 1. There exists qn such that∑
xn∈An

qn(xn) ≤ 1 , and
1
n

log
pn(xn)
qn(xn)

→ 0 for

any p with probability one as n→∞.

Hereafter, we denote L(xn) := − log qn(xn).

3.2 Estimation of Density Functions

Suppose that a sequence of random variables
{Xi}ni=1 are emitted i.i.d. by density function
fn(xn) :=

∏n
i=1 f(xi) for xn = (x1, · · · , xn).

Let X be a range in which each Xi takes val-
ues. We construct a sequence {Ak}∞k=0 such that
A0 := {X} and Ak+1 is a refinement of Ak.

Example 2. If X = [0, 1), then A0 = {[0, 1)},
and the sequence

A1 = {[0, 1/2), [1/2, 1)}
A2 = {[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1)}

. . .

Ak = {[0, 2−(k−1)), [2−(k−1), 2 · 2−(k−1)),
· · · , [(2k−1 − 1)2−(k−1), 1)}

. . .
satisfies the condition.

For each k, we define projection sk : X n →
Ank by xn 7→ an if xn ∈ an ∈ Ank . We de-
note by λ the Lebesgue measure of R with
λn(an) =

∏n
i=1 λ(ai) for an = (a1, · · · , an),

and by pnk(an) :=
∏n
i=1 pk(ai) the probability

of sk(Xn) = an ∈ Ank .
Since sk(Xn) is i.i.d., there exists qnk (Propo-

sition 1) such that

1
n

log
pnk(sk(xn))
qnk (sj(xn))

→ 0

for any pk. If we define gnk (xn) :=
qnk (sk(xn))
λn(sk(xn))

,

we construct a measure over X n with {ωk}∞k=1

such that
∑
ωk = 1, ωk > 0 to define gn(xn) :=

∞∑
k=1

ωjg
n
k (xn). Notice

∫
xn∈Xn

gn(xn)dxn = 1.

Let fk be the density function associated with
Ak, and h(f) the differential entropy of density
function f .

Proposition 2 (Ryabko 2009). Fix {Ak}∞j=1.
Then, for arbitrary f such that h(fk) → h(f)
as j →∞

1
n

log
fn(xn)
gn(xn)

→ 0 .

3.3 Generalization

Lemma 1 (The Radon-Nikodym Theorem
(Billingsley, 1995)). For σ-finite measures3 µ, ν
on the measure space with entire set Ω and σ-set
field F , the following conditions (µ is absolutely
continuous with respect to ν) are equivalent:

1. there exists f such that µ(D) =∫
D f(x)dν(x) for D ∈ F

2. µ � ν, i.e. ν(D) = 0 =⇒ µ(D) = 0 for
D ∈ F

3A measure ν is σ-finite if there exists {Ai}∞i=1 such
that ν(Ai) <∞ and ∪Ai = Ω.
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We denote such an f (Radon-Nikodym deriva-
tive (Billingsley, 1995) of µ with respect to η)

by
dµ

dν
.

In Section 3.2, we assumed µ � λ for an
unknown probability measure µ, and construct

g =
dν

dλ
such that ν � λ.

Now we consider the general case µ 6� λ.
Choose η such that µ � η 6= λ to estimate the

density function
dµ

dη
with respect to η instead.

Then, estimation of
dµ

dη
is similar except that

λ, λn are replaced by η, ηn.
Hereafter, we assume the existence of a un-

derlying supporting σ-finite measure η such that

µ� η, so that f =
dµ

dη
and g =

dµ

dη
.

Example 3. Suppose B = {1, 2, · · · }, and that
the following sequence is given:
B0 = {{1, 2, · · · }}
B1 = {{1}, {2, · · · }}
B2 = {{1}, {2}, {3, · · · }}
. . .
Bl = {{1}, · · · , {l}, {l + 1, · · · }}
. . .

For each l, we define projection tl : Yn → Bn

by yn → bn if yn ∈ bn ∈ Bn
l . Then m = l + 1,

and if the source is i.i.d.,

νnl (tl(yn)) :=

Γ(
m

2
)
∏
b∈Bl

Γ(cn[b] +
1
2

)

Γ(n+
m

2
)Γ(

1
2

)m
,

where cn[b] is the number of occurrences of b ∈
Bl in sl(yn) ∈ Bn

l . If we choose η as η({j}) :=
1

j(j + 1)
for j = 1, 2, · · · , thus

η({l + 1, · · · }) =
∞∑

j=l+1

=
1

l + 1
,

then we have µ� η. Then, we can compute

dνnl
dηn

=
νl(tl(yn))∏n
i=1 η(tl(yi))

to obtain
dνn

dηn
=
∞∑
l=1

ωl
dνnl
dηn

. The obtained mea-

sure νn is asymptotically close to µn in the sense

of Theorem 1 as n→∞.

4 Estimation of Mutual Information

Let X,Y be random variables with ranges X , Y.
We assume that the measures µX , µY of X,Y
are absolutely continuous with respect to σ-
finite measures ηX , ηY , respectively. By ηX⊗ηY
we denote the product measure of ηX , ηY , i.e.
ηX ⊗ ηY (dx, dy) = ηX(dx)ηY (dy).

Choose {Ak}, {Bl} so that the differential en-
tropy of the density functions fX,k, fY,l, fXY,k,l
over Ak, Bl, Ak ×Bl converge to

fX =
dµX
dηX

, fY =
dµY
dηY

, fXY =
dµXY

d(ηX ⊗ ηY )

as k, l → ∞. Then, there exist gnX , g
n
Y , g

n
XY

such that with probability one as n → ∞
1
n

log
fnX(xn)
gnX(xn)

→ 0 ,
1
n

log
fnY (yn)
gnY (yn)

→ 0 , and

1
n

log
fnXY (xn, yn)
gnXY (xn, yn)

→ 0 . Thus,

1
n

log
gnXY (xn, yn)
gnX(xn)gnY (yn)

− 1
n

log
fnXY (xn, yn)
fnX(xn)fnY (yn)

→ 0 .

From the Shannon-McMillan-Breiman theorem,

1
n

log
fnXY (xn, yn)
fnX(xn)fnY (yn)

=
1
n

n∑
i=1

log
fXY (xi, yi)
fX(xi)fY (yi)

→ I(X,Y )

which can be also obtained from the strong law
of large numbers. Thus,

Theorem 1. Given xn ∈ X n, yn ∈ Yn,

1
n

log
gnXY (xn, yn)
gnX(xn)gnY (yn)

is a consistent estimator of mutual information
I(X,Y ).

Example 4. We construct νnk,l(sk(x
n), tl(yn))

as
Γ(
m

2
)
∏
a∈Ak

∏
b∈Bl

Γ(cn[a, b] +
1
2

)

Γ(n+
m

2
)Γ(

1
2

)m
,
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based on the sequence Ak, Bl, k, l = 0, 1, 2, · · · ,
where m = 2k(l + 1), and {Ak} and {Bl} have
been constructed in Examples 2 and 3, respec-
tively, and cn[a, b] is the number of occurrences
of a ∈ Ak and b ∈ Bl in (sk(xn), tl(yn)) ∈
Ank ×Bn

l . Then, we can calculate

dνnk,l
dηn

=
νk,l(sk(xn), tl(yn))∏n

i=1 λ(sk(xi))
∏n
i=1 η(tl(yi))

to obtain
dνn

dηn
=
∑
k,l

ωk,l
dνnk,l
dηn

.

5 A Generalized Version of the
Chow-Liu Algorithm based on the
MDL

Let gn(i) := gnX(xn) with X = X(i) and a sup-
porting measure ηi, and gn(i, j) := gnXY (xn, yn)
with X = X(i), Y = X(j) and the support-
ing measure ηi ⊗ ηj . We define the Bayesian
measure over X n relative to (V,E), where X :=
X (1) × · · · × X (N)

gn(1, · · · , N |E) :=

∏
{i,j}∈E g

n(i, j)∏
i∈V gn(i)di−1

=
∏
{i,j}∈E

gn(i, j)
gn(i)gn(j)

∏
i∈V

gn(i) ,

the description length with respect to (V,E)
and η := η1 ⊗ · · · ⊗ ηN

Lη(xn|E) := − log gn(1, · · · , N |E)

= −
∑
i∈V

log gn(i)−
∑
{i,j}∈E

log
gn(i, j)

gn(i)gn(j)
,

and the Bayesian estimator

J(i, j) :=
1
n

log
gn(i, j)

gn(i)gn(j)
.

From Theorem 1, we can choose as J(i, j) a con-
sistent estimator of I(i, j).

Example 5. Let {Ak}, {Bl}, {Ak ×Bl} be the
sequences constructed in Examples 2,3 and 4.
In order to obtain the score gn(i), we consider
({Ak}, λ). Given xn = (x1, · · · , xn) ∈ An, we
obtain the score gn(i) for the weights {wk}Kk=1

and functions s and λ. For k = 1, · · · ,K, the

s returns a ∈ Ak such that xj ∈ a for each xj ,
and the λ returns the measure of a ∈ Ak, where
|Ak| denotes the cardinality of Ak.

For each k = 0, 1, · · · ,K, the following algo-
rithm returns gnk (xn) given xn and Ak, and we
obtain gn(i) :=

∑
l wkg

n
k (xn) given {wk}.

1. c[a] := 0 for a ∈ Ak;
2. gnk := 1;

3. for h = 1, · · · , n
(a) a := s(xj);
(b) c[a] := c[a] + 1;

(c) gnk := gnk ∗
c[a] + 1/2
h+ |Ak|/2/λ(a);

It is easy to find that the computation in the
proposed algorithm is linear with number n of
the examples. So, if the computation is large,
then that will be due to the choice of {Ak}Kk=1.

If we apply binary search for step 3 (a), then
log2 |Ak| comparisons are required. So, at most
O(L log |Ak|) computation is required for the K
cycles. Some might think that |AK | would be
eventually large. But in reality, we cannot make
|Ak| so large unless n is fairly large. In fact, if
|Ak| is too large, then each c[a] will be small, so
that the value of gnk is not significant compared
with {gnr }r<k, and does not affect the resulting
value of so much.

Similarly, for each k = 0, 1, · · · ,K and
l = 0, 1, · · · , L the following algorithm returns
gnkl(x

n) given xn and Ak, Bl, and we obtain
gn(i, j) :=

∑
k,l wklg

n
kl(x

n) given {wkl}.
1. c[a, b] := 0 for a ∈ Ak, b ∈ Bl;
2. gnkl := 1;

3. for h = 1, · · · , n
(a) a := s(xj); b := t(yj);
(b) c[a, b] := c[a, b] + 1;

(c) gnkl := gnkl ∗
c[a, b] + 1/2
h+ |Ak||Bl|/2/(λ(a)η(b));

Table 1 shows the values J(i, j) and its com-
putation time for I(i, j) = 2.0 (The logarithm
base is two) and K = 8, 64 and n = 100, 1000.
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(K,L) n J(i, j) time (ms)
(2,4) 100 0.0612 1.23
(2,4) 1000 0.0531 10.67
(4,8) 100 0.0428 1.69
(4,8) 1000 0.0342 14.71

Table 1: The value J(i, j) and its averaged com-
putation time

We generate (xn, yn) ∈ (A × B)n one hundred
times to obtain the arithmetic average of J(i, j).
The data (xn, yn) are generated so that they are
independent (I(X,Y ) = 0). We find that if K
is too small, we only obtain an approximation
even when n is large, and that for large K, large
n is required for convergence.

In the current problem, for any method, the
computation is eventually high, but this is due
to the nature of the problem, not due to the
proposed method.

6 Concluding Remarks

In this paper, we proposed the Bayesian esti-
mator of mutual information which has several
merits:

1. consistent: the true mutual information is
obtained as n grows;

2. Bayesian: maximizing the sum of mutual
information over the chosen edges leads to
minimizing the description length relative
to the forest for each n;

3. nonparametric: no assumption about any
specific parameters is required;

4. robust: compared to existing approaches
(Wang et al, 2005)(Silva and Narayan
2010) because the proposed approch does
not seek any one histogram but evaluates
mutual information based on mixtured val-
ues of those candidate histograms; and

5. general: applicable to any random variable.

Future works includes figuring out more ap-
plications of the universal Bayesian measure.
Thus far, it has been found that a similar

approach can be applied to Bayesian network
structure estimation when both discrete and
continuous variables are present (Suzuki 2011).
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