Qualitative Chain Graphs and their Use in Medicine

Martijn Lappenschaar, Arjen Hommersom, Peter Lucas

Department of Model-Based System Development
Institute for Computing and Information Sciences
University of Nijmegen

September 19, 2012
Motivation: modelling PGMs in medicine

- Underlying **physiological processes**: dynamic (feedback) systems
 - homeostasis is ensured (**equilibrium** state)
- Disturbances may lead to suboptimal equilibria (**disease**)
- **Treatments** may affect the ‘setpoint’ of these systems
- Example:

![Diagram](image.png)
Chain graph as equilibrium of causal feedback

Example LWF chain graph (Lauritzen and Richardson)

The distribution of the chain graph model:

```
  a → c
    |
  b → d
```

represents the equilibrium of a process represented by an infinite DAG:

```
a  c
  |   |   |
  v   v   v
  c0 → c1 → ci → ci+1 → di → di+1
  d0 → d1 → di
  b
```
The example is modelled as a chain graph:

\[\Pr(Ob, Th, LD, DM, Ch, Gl) \propto \Pr(Ch \mid LD) \cdot \Pr(Gl \mid DM) \cdot \varphi_1(LD, DM, Ob) \cdot \varphi_2(Ob, Th, DM) \cdot \Pr(Ob) \cdot \Pr(Th) \]

\(\varphi_i \) are black-box parameters.
Problem: it can be difficult to exploit human knowledge in assessing chain graph parameters

Goal: qualitative abstraction of chain graphs

Approach: qualitative relationships based on qualitative probabilistic networks

Qualitative and quantitative knowledge is combined

Use such qualitative knowledge for making decisions
Qualitative probabilistic networks (QPNs)

- Qualitative abstractions of Bayesian networks

- Instead of a conditional probability $P(B \mid \pi(B))$, qualitative properties of the conditional probability are associated to each node B
 - Qualitative influences $S^\delta(A, B)$: the effect of a cause A on B (all other things being equal)
 - Qualitative synergies: interaction of two causes on the effect
 - Additive synergy $Y^\delta(\{A_1, A_2\}, B)$
 - Product synergy $X^\delta(\{A_1, A_2\}, b)$

- Probabilistic relationships have signs $\delta \in \{+, -, 0, ?\}$
Qualitative influences in chain graphs

- In QPNs: the influence of A on B is δ if

 $$\delta = \text{sign}(P(b \mid a, x) - P(b \mid \bar{a}, x))$$

 for all configuration x of other parents of B; $\delta = ?$ otherwise

- Probabilistic chain graphs: neighbours need to be considered

Causal definition of influence

The influence of A on B in a context $c \in V - AB$ is

$$P(b \parallel a, c) - P(b \parallel \bar{a}, c)$$

where $P(X \parallel Y = y)$ denotes the probability of X after the intervention $Y = y$
Chain graph influence

Given two nodes A and B and a context c, then the influence of A on B in context c equals:

$$P(b \mid a, z) - P(b \mid \overline{a}, z)$$

where $c = z \cup x$, $Z = \text{bd}(B) - A$, and $X = V - ZAB$.

The influence of Ob on DM is:

$$P(dm \mid ob, Th, LD) - P(dm \mid \overline{ob}, Th, LD)$$

in any context $\{Th, LD, Ch, Gi\}$.
QPN concepts can then be defined for qualitative chain graphs:

Influences

For example: \(S^+(A, B) \) if \(A \in \text{bd}(B) \) and

\[
P(b \mid a, \text{bd}(B) - A) \geq P(b \mid \bar{a}, \text{bd}(B) - A)
\]

Synergies

For example: \(Y^+(\{A_1, A_2\}, B) \) if \(A_1, A_2 \in \text{bd}(B) \), \(Z = \text{bd}(B) - A_1A_2 \), and

\[
P(b \mid a_1, a_2, Z) - P(b \mid \bar{a}_1, a_2, Z) \\
\geq P(b \mid a_1, \bar{a}_2, Z) - P(b \mid \bar{a}_1, \bar{a}_2, Z)
\]

\(\Rightarrow \) Other QPN concepts can be defined similarly
It holds that qualitative signs of chain graphs are symmetric, i.e., suppose \((A, B) \in E\), then \(P(b \mid a, X) - P(b \mid \bar{a}, X) \geq 0\) if and only if \(P(a \mid b, Y) - P(a \mid \bar{b}, Y) \geq 0\), where \(X = \text{bd}(B) - A\) and \(Y = \text{bd}(A) - B\).
Reasoning with qualitative chain graphs

- In QPNs, conclusions are derived based on the signs (arc reversal or sign propagation)

- Alternative approach is to look upon qualitative influences/synergies as constraints (Druzdzel and van der Gaag, 1995)
 1. Sample parameters consistent with constraints
 2. Perform inference in each network
 3. Derive confidence intervals for marginals

- Can combine qualitative and quantitative information

- Locality of constraints can be exploited during sampling (come to the poster..)
Example

\[P(Ob) = 0.3 \quad P(Th) = 0.5 \]

\[S^+(Ob, DM) \]
\[S^-(Th, DM) \]
\[S^+(LD, DM) \]
\[Y^+(\{Ob, Th\}, DM) \]

\[P(Ch | LD) = 0.8 \]
\[P(Ch | \overline{LD}) = 0.3 \]

\[P(Ch | Th) (82\% > P(Ch)) \]
\[P(Ch | Th, Ob) (91\% > P(Ch)) \]
Conclusions and future work

Conclusions:

▶ Feedback systems relevant in many domains (medicine, economics, embedded systems, etc)
▶ Qualitative chain graph models allow combining qualitative and quantitative information to model such systems
▶ While not precise, can be used for decision making

Future work:

▶ Application to multiple feedback systems (diabetes, cardiovascular domains)
▶ Extending the theory and efficiency of reasoning