
ProbModelXML.
A format for encoding probabilistic graphical models

Manuel Arias
Dept. Artificial Intelligence. UNED. Madrid, Spain

Francisco Javier Dı́ez
Dept. Artificial Intelligence. UNED. Madrid, Spain

Miguel Palacios-Alonso
Computer Science Dept. INAOE, Tonantzintla, Mexico

Íñigo Bermejo
Dept. Artificial Intelligence. UNED. Madrid, Spain

Abstract

ProbModelXML is an XML format for encoding probabilistic graphical models. The main advan-
tages of this format are that it can represent several kinds of models, such as Bayesian networks,
Markov networks, influence diagrams, LIMIDs, decision analysis networks, as well as tempo-
ral models: dynamic Bayesian networks, MDPs, POMDPs, Markov processes with atemporal
decisions (MPADs), DLIMIDs, etc., and the possibility of encoding new types of networks and
user-specific properties without the need to modify the format definition.

1 Introduction

A probabilistic graphical model (PGM) consists of
a probability distribution and a graph, such that
each node in the graph represents one of the vari-
ables on which the probability is defined, and
the structure of the graph imposes some proper-
ties of independence on the probability distribu-
tion. Some PGMs are purely probabilistic, such
as Bayesian networks (Pearl, 1988), while others,
such as influence diagrams (Howard and Mathe-
son, 1984), include decisions and utilities. Dynamic
PGMs (Dean and Kanazawa, 1989; Murphy, 2002)
are temporal models that discretize time in inter-
vals of a fixed duration (cycle length) and create an
instance of each variable for each time period.

Several formats have been developed for encod-
ing PGMs, but almost all of them are designed for
a single software tool. One exception is Fabio Coz-
man’s XMLBIF (see Sec. 4.1), that has been imple-
mented by several software tools, but it is restricted
to Bayesian networks containing only discrete vari-
ables, with a very limited set of features. Another
exception was DSC, proposed by Microsoft as a
standard format for Bayesian networks and influ-
ence diagrams, that would receive contributions
from the UAI (uncertainty in artificial intelligence)
community; however, some time later Microsoft

removed the web pages of DSC and developed a
new XML format, MSBNx, limited to Bayesian net-
works.

For this reason, we decided to develop a new
format for encoding PGMs, that presents two main
advantages with respect to previous proposals.
First, it can encode several types of PGMs: its cur-
rent version includes Bayesian networks, Markov
networks, influence diagrams, LIMIDs, decision
analysis networks, dynamic Bayesian networks,
MDPs, Markov processes with atemporal decisions
(MPADs), POMDPs, Dec-POMDPs, and DLIMIDs
(see (Arias et al., 2011) for definitions and refer-
ences), and it also permits to encode new models
by combining the existing constrains or by defining
new ones (see Sec. 3.1.1). The second advantage
is that it can encode user-specific features by us-
ing the AdditionalProperties tag (see Sec. 3.1.2).
ProbModelXML was designed as the default format
for OpenMarkov,1 an open-source tool for proba-
bilistic graphical models, but our purpose is not
only to fulfill the needs of a single tool and a sin-
gle research group, but to offer an extensible well-
documented format that can be used by a large
community of people. This is the main reason for
submitting this paper to the PGM workshop: to

1www.openmarkov.org.



make the format known to a wide audience and to
receive suggestions from our colleagues. In fact, we
will not release version 1.0.0 of the format until we
have received the feedback from the communities
of PGMs and POMDPs.

The rest of the paper is structured as follows: in
Section 2.1 defines the basic properties of PGMs,
including dynamic models. Section 3 describes the
most relevant aspects of the specification of the for-
mat. Section 4 reviews other formats for PGMs and
Section 5 contains the conclusions. Given that it is
impossible to present in this paper all the details of
the format, we will limit ourselves to describing its
main features. The complete specification can be
found in (Arias et al., 2011).

2 Background: Probabilistic graphical
models

2.1 Basic properties

A probabilistic graphical model (PGM) consists of
a set of variables V, a graph G such that each node
represents a variable in V, and a probability dis-
tribution P that satisfies certain properties of inde-
pendence dictated by the structure (the links) of the
graph (Pearl, 1988). In some PGMs all the nodes
represent chance variables; in this case, the proba-
bility distribution is defined over V: P(v). Other
models contains three types of nodes: chance, de-
cision, and utility, denoted by C, D, and U, respec-
tively, such that V = C∪ D∪ U; in this case, the
probability distribution is P(c|d).

There are three types of variables, depending on
their domain. A variable is finite-states if it takes
values on finite set of values. It is numeric if it rep-
resents the result of a measurement, including the
count of the number of elements in a set. A dis-
cretized variable is a numeric variable that has been
assigned a finite set of thresholds, which induce a
finite set of intervals; each interval is considered as
a state of the variable.

Links can be directed or undirected. Paths can
be open or closed. If a closed path can be traversed
completely crossing all its directed links forwards
(i.e., from the tail of the link to its head), then that
path is a cycle; otherwise it is a loop—see the exam-
ples in (Arias et al., 2011). A self-loop is a link whose
nodes are the same; for example, A — A or A → A.
It can also be defined as a closed path consisting of
only one link. Most PGMs do not accept self-loops,
but there are exceptions, such as the representation
of dynamic models in Netica and GeNIE.2

2See www.norsys.com and genie.sis.pitt.edu.

2.2 Dynamic models

Dynamic PGMs are a generalization of some
Markovian models proposed several decades ear-
lier. Thus, dynamic Bayesian networks (Dean and
Kanazawa, 1989; Murphy, 2002) extend Markov
chains and hidden Markov models, by allowing
that the state of the system be represented by
a set of variables rather than by a single vari-
able. In the same way, Markov Decision Process
(MDPs) (Bellman, 1957) are extended by factored
MDPs (Boutilier et al., 1995; Boutilier et al., 2000))
and Partially Observable Markov Decision Pro-
cess (POMDPs) are extended by factored POMDPs
(Boutilier and Poole, 1996)). DLIMIDs (Dı́ez and
van Gerven, 2011) are very similar to POMDPs, but
they allow several decision nodes per time slice.

3 The ProbModelXML format

Each ProbModelXML file may contain one network
and, optionally, some inference options, such as the
default inference algorithm or an elimination or-
dering. Alternatively, a file may contain some ev-
idence, consisting of one or several evidence cases,
each one composed of a set of findings. A third
possibility is that the file contains a set of policies;
it may be a strategy returned by an algorithm or
a policy imposed by the user to perform what-if
reasoning.

Therefore, the skeleton of a file in ProbModelXML
format is:

<?xml version=“1.0” encoding=“UTF-8”?>
<ProbModelXML formatVersion=“1.0”>
<ProbNet />0..1
<Policies />0..1
<InferenceOptions />0..1
<Evidence />0..1

</ProbModelXML>

The default encoding for ProbModelXML is UTF-
8, the same as for XML. Therefore, it is redundant
to write encoding=''UTF-8'', but we prefer to say it
explicitly, because it is possible to use other encod-
ings.

3.1 Specification of probabilistic networks

The skeleton for a probabilistic network is as fol-
lows:

<ProbNet type=enumNetworkType >
<AdditionalConstraints />0..1
<Comment />0..1
<Language />0..1
<AdditionalProperties />0..1
<Variables />



<Links />

<Potentials />

</ProbNet>

In the current version of the format, the type
can be one of the following: BayesianNetwork
(Pearl, 1988), MarkovNetwork (Pearl, 1988), Influ-
enceDiagram (Howard and Matheson, 1984), LIMID
(Lauritzen and Nilsson, 2001), DynamicBayesian-
Network (Dean and Kanazawa, 1989; Murphy,
2002), MarkovDecisionProcess (which includes fac-
tored MDPs (Boutilier et al., 2000)), POMDP
(which includes factored POMDPs (Boutilier and
Poole, 1996) and MOMDPs (Ong et al., 2009)), and
DLIMID (Dı́ez and van Gerven, 2011).

3.1.1 Constraints

The main purpose of constraints is to prevent the
user from doing illegal operations at the graphical
user interface (GUI), such as giving an empty name
to a variable or creating a cycle in a Bayesian net-
work. Another use of constraints may be, for exam-
ple, to prevent a learning algorithm from adding
more than n parents to a node.

In the OpenMarkov tool, each network type is
defined by a set of basic constraints. For example,
one of the constraints that define a Bayesian net-
work is that it can not contain cycles; another con-
straint is that it can not contain decision nor utility
nodes. The basic constraints available in ProbMod-
elXML and the set of constraints that define each
network type are listed in (Arias et al., 2011). De-
coupling the constraints from the rest of the code
has facilitated the treatment of new network types
in the future.

Additionally, the user can assign to a network
other constraints that are not imposed by the net-
work type; for example, the constraint that the
network contains only finite-state variables. This
way, an algorithm that can only solve Bayesian net-
works with finite-state variables may check that
the network has that constraint assigned (an im-
mediate check) or that all the variables are finite-
states (which would require examining all the vari-
ables). If the network does not satisfy this con-
straint, the algorithm will throw an exception, ex-
plaining why it can not evaluate that network. Ob-
viously, other software tools can treat constraints
in different ways.

3.1.2 Additional properties

This tag permits to extend the ProbModelXML
format by representing user-defined properties.
This tag can appear in the context of ProbNet (see

Section 3.1), Variable, State, Potential, EvidenceCase,
and Policy (see below). In all cases, its skeleton is:

<AdditionalProperties>

<Property name=string value=string/>1..n
</AdditionalProperties>

The main use of this tag is to store properties
that are not part of the ProbModelXML format.
For example, in Elvira each variable has a name,
which is a string with some restrictions, and a ti-
tle. In ProbModelXML we do not need this dis-
tinction, because the name can be any string. If
the software package Elvira had to encode a vari-
able in ProbModelXML, the name can be stored as
the attribute name, while the title can be stored
in the list of AdditionalProperties: <Property

name=“elvira.title” value=“Test result”/>. Simi-
larly, in GeNIE each node has a fill-in color,
that can be stored as follows: <Property

name=“genie.interior.color” value=“e5f6f7”/>. This
way, any tool can save its models in ProbModelXML
without missing information. Furthermore, a sec-
ond tool might read that network, storing apart the
properties that it does not understand, and edit it;
when saving the network, it can write down also
the properties stored apart. Then, the first tool can
open again the modified network, thus recovering
the properties that were not understood by the sec-
ond.

Another use of the AdditionalProperties tag
is to encode a multi-lingual version of the net-
work. For example, if the network has a property
<Language>en</Language> (cf. Sec. 3.1), which
means that its default language is English, we may
have the following variable:

<Variable name=“Fever”>
...

<AdditionalProperties>

<Property name=“name.es” value=“Fiebre”/>
<Property name=“name.fr” value=“Fièvre”/>
<Property name=“name.de” value=“Fieber”/>

</AdditionalProperties>

<Variable>

When the network is displayed in English, the
name of this variable will appear as “Fever”, when
in Spanish, as “Fiebre”, etc.

3.1.3 Variables

The skeleton for encoding a variable is:

<Variable name=string type=enumDomainType
role=enumNodeRole>

<Comment />0..1
<Coordinates />0..1



<AdditionalProperties />0..1
specification of domain

</Variable>

The type is an enumerate that can take on three
values: FiniteStates, Numeric, and Discretized. The
role can be Chance, Decision, or Utility. The domain
of a finite-states variable is specified by a list of
<States>:

<States>

<State name=string>
<AdditionalProperties />0..1

</State>2..n
</States>

The domain of a numeric variable is specified by
two thresholds, that define an interval, plus a num-
ber that denotes the precision with which its value
is measured.

<Unit>string</Unit>0..1
<Precision>decimalNumber</Precision>
<Interval>

<Threshold value=number
belongsTo=enumSide/>2

</Interval>

Given that a discretized variable can be viewed as
being finite-states and numeric at the same time,
its skeleton has the tags of both:

<Unit />0..1
<Precision />

<Thresholds>

<Threshold />3..n
</Thresholds>

<States />2..n

3.1.4 Links

The skeleton of a link is:

<Links>

<Link var1=string var2=string directed=boolean>
<Comment />0..1
<Label>string</Label>
<AdditionalProperties />0..1

</Link>0..n
</Links>

The AdditionalProperties tag can be used to de-
clare new types of links. For example, when learn-
ing a Bayesian network from a database we can
use a model network that determines which links
must be necessarily present in the learned network,
which links are forbidden, etc. This can be accom-
plished by assigning AdditionalProperties to the
links in the model network.

3.1.5 Potentials

A potential ψ defined on a set of variables V is
a function that assigns a real number to each con-
figuration v of V. The skeleton of a potential in
ProbModelXML is:

<Potential type=enumPotentialType
role=enumPotentialRole label=string>

<Comment />0..1
<AdditionalProperties />0..1
specification of the potential

</Potential>

The role of a potential can be JointProbability, Con-
ditionalProbability, Utility, or Policy.

In the current version of the format we have sev-
eral types of potentials. A Table can be used when
all the variables are finite-states or discretized; es-
sentially, it consists of a list of numeric values (pa-
rameters), one for each configuration of the vari-
ables; it is also possible to assign second-order
probability distributions to the parameters: Beta,
Dirichlet, Normal, LogNormal, etc., that can be used
for sensitivity analysis.

A Tree/ADD is a compact way of storing tables
in which some of the numeric values repeat them-
selves; each branch outgoing from a finite-states
variable corresponds to one or several of its states;
each branch outgoing from a numeric variable cor-
responds to an interval. The difference between a
tree and an ADD (algebraic decision diagram (Ba-
har et al., 1993)) is that the structure of the latter is
an acyclic directed graph. In ProbModelXML there
is only one potential type for both trees and ADDs.

ICIModel (where ICI stands for “independence
of causal influence”) is the type of potential used
to represent canonical models (Dı́ez and Druzdzel,
2006), such as the noisy-OR, noisy-MAX, etc. It
contains a potential for each link in the family and,
optionally, another subpotential for the leak prob-
ability.

<Potential type=“ICIModel”
role=“ConditionalProbability” >

<Model>or</Model>
<Subpotentials>

...

</Subpotentials>

</Potential>

The LinearCombination potential is used when a nu-
meric variable Y depends deterministically on a
mixed set of variables X = D ∪ C—which in gen-
eral will be the parents of node Y in the graph—
where C is the set of numeric variables and D is



the set of finite-states variables:

y = α(d) +
m

∑
i=1

βi(d) · ci .

This function allows the parents of a utility node to
be any combination of chance, decision, and utility
nodes, a feature that we missed when building an
influence diagram for a medical problem, because
standard influence diagrams do not admit this pos-
sibility.

In a ConditionalGaussian potential (Lauritzen and
Wermuth, 1989), the conditional probability den-
sity for Y is a univariate normal distribution:

f (y|d, c) ∼ N (μ(d, c), σ2(d)) ,

where

μ(d, c) = α(d) +
m

∑
i=1

βi(d) · ci .

The potentials Exponential and MixtureOfEx-
ponentials, used in combination with Tree/ADD,
can represent mixtures of truncated exponentials
(Moral et al., 2001). Other potentials available in
ProbModelXML are LogisticRegression and Delta .

3.2 Specification of evidence

A finding is the assignment of a value to a variable.
A set of findings is an evidence case. Therefore, the
skeleton for evidence is:

<Evidence>

<EvidenceCase>

<Finding variable=string state=string
stateIndex=integer
numericValue=number/>0..n

</EvidenceCase>0..n
</Evidence>

The attribute variable is compulsory. If the variable
is of type finite-states, then either the state or state-
Index must be present. If the variable is numeric,
then numericValue must be present. If the variable
is discretized, only one of the attributes may be
present.

3.3 Specification of policies

In an influence diagram, a policy for a decision
D is the assignment of a probability distribution
to each configuration of the informational prede-
cessors of D, i.e., the variables whose values are
known when making the decision. A deterministic
policy is the assignment of a degenerate distribu-
tion to each configuration. Therefore, the specifica-
tion of a policy is essentially the same as that of a
conditional probability potential (cf. Sec. 3.1.5).

3.4 Specification of dynamic models

The representation of dynamic models in their
compact form (see Sec. 2.2) is similar to that of
other types of models. There are, however, spe-
cific network tags, such as TimeUnit, CycleLength,
Horizon, and CoordinatesShift, which is used to
determine the relative positions of temporal vari-
ables in different time slices.

Temporal variables are recognized because they
have an attribute indicating the time slice that con-
tains the variable:

There are also specific potentials for dynamic
models, such as CycleLengthShift and WeibullDistri-
bution.

4 Related work: other formats

Several formats have been developed for proba-
bilistic graphical models (PGMs) and Markov de-
cision processes (MDPs). In this section we re-
view briefly those that are more related to Prob-
ModelXML.

4.1 Formats for Bayesian networks and
influence diagrams

DNET (Netica) DNET was developed by Norsys
Software Corp. as the default format for their
software package, Netica.3 This format can
represent Bayesian networks, influence diagrams,
MDPs and POMDPs, with both discrete (finite-
states) or continuous variables. Its specification
is available at www.norsys.com/downloads/DNET_

File_Format.txt.

Elvira Elvira (Elvira Consortium, 2002) started in
1997 as a joint project of several Spanish univer-
sities.4 The Elvira format, which uses a C-like
syntax, can represent Bayesian networks and in-
fluence diagrams with continuous and finite-state
variables, canonical models (Dı́ez and Druzdzel,
2006), uncertain parameters (defined by intervals),
etc. Its specification can be found at leo.ugr.

es/elvira/devel/Formato/formato.html. Some
of the features of the Elvira format were inspired
on DNET, and in turn many of ProbModelXML’s
features are borrowed from Elvira.

XMLBIF It was proposed by Fabio Cozman, with
suggestions from Marek Druzdzel and others—see
www.poli.usp.br/p/fabio.cozman/Research/

InterchangeFormat. It is restricted to the repre-
sentation of Bayesian networks with finite-state

3See www.norsys.com/netica.html.
4leo.ugr.es/elvira and www.ia.uned.es/~elvira.



variables. It is the default format for Cozman’s
JavaBayes tool.5 Weka6 and many of the tools for
PGMs can read and write networks in this format.

MSBNx This XML format was proposed by
Microsoft as the default format for their Microsoft
Bayesian Network (MSBNx) tool, as a replacement
for the old non-XML format DSC. It can only repre-
sent Bayesian networks. See research.microsoft.

com/en-us/um/redmond/groups/adapt/msbnx and
research.microsoft.com/en-us/um/redmond/

groups/adapt/msbnx/msbnx/File_Formats.htm.

XDSL It is the default format for SMILE and
GeNIE, two programs developed by the Decision
Systems Laboratory at the University of Pitts-
burgh.7 It can represent Bayesian networks,
influence diagrams, and some dynamic models,
with both continuous and finite-state variables.
It can also represent canonical models. The
XML schemas (XSDs) that define it are available
at genie.sis.pitt.edu/SMILEHelp/Appendices/

XDSL_File_Format_-_XML_Schema_Definitions.

htm.

4.2 Formats for POMDPs

Cassandra’s format Anthony Cassandra has used
a format for flat (i.e., non-factored) POMDPs, that
is available at www.cassandra.org/pomdp/code/

pomdp-file-grammar.shtml and www.cassandra.

org/pomdp/code/pomdp-file-spec.shtml—see
also www.cassandra.org/pomdp/examples. The
software package Perseus (Spaan and Vlassis,
2005) can also read files in Cassandra’s format.

SPUDD It is the format used by the soft-
ware package SPUDD, which stands for “Stochas-
tic Planning using Decision Diagrams” (Hoey et
al., 1999). It can encode factored MDPs and
POMDPs. Potentials are represented by alge-
braic decision diagrams (ADDs)—see Section 3.1.5.
Some example POMDPs (files having the exten-
sion .txt) are included in a tar.gz file, to-
gether with SPUDD’s C++ source code, which is
available at www.computing.dundee.ac.uk/staff/
jessehoey/spudd/index.html.

The tool Symbolic Perseus,8 by Pascal Poupart
(Poupart, 2005), uses a subset of the SPUDD
format, whose grammar is specified in this file:

5www.pmr.poli.usp.br/ltd/Software/javabayes.
6www.cs.waikato.ac.nz/ml/weka.
7See genie.sis.pitt.edu.
8See www.cs.uwaterloo.ca/~ppoupart/software.

html. The file ParseSPUDD.java contains the parser for
the SPUDD format.

www.cs.uwaterloo.ca/~ppoupart/software/

symbolicPerseus/problems/SYNTAX.txt—
see also the examples at www.cs.uwaterloo.

ca/~ppoupart/software/symbolicPerseus/

problems.

PomdpX It is an XML format for POMDPs,
developed at the University of Singapore:
bigbird.comp.nus.edu.sg/pmwiki/farm/appl/

index.php?n=Main.PomdpXDocumentation. It
admits flat POMDPs, as well as MOMDPs.
In a MOMDP the state space is factored into
two variables, X (observable) and Y (unob-
servable), and there is a third variable in each
time slice, O, which provides indirect infor-
mation about Y (Ong et al., 2009). There is a
companion XML format for representing the
policy obtained when evaluating a POMDP:
bigbird.comp.nus.edu.sg/pmwiki/farm/appl/

index.php?n=Main.PolicyXDocumentation.

PPDDL and RDDL Two additional formats were
proposed to encode the problems proposed at
the Probabilistic Planning Track of the Inter-
national Planning Competition (IPC). The Prob-
abilistic Planning Domain Definition Language
(PPDDL),9 used at the 4th and 5th IPC in 2004
and 2006 respectively, was able to encode factored
MDPs with finite-state variables. The Relational
Dynamic Influence Diagram Language (RDDL),
used at the 7th IPC in 2011, was able to repre-
sent relational (PO)MDPs with both finite-state and
continuous variables.10. These formats were not in-
tended to encode non-temporal Bayesian networks
and influence diagrams, but they has enough ex-
pressive power to represent them as well.

4.3 Discussion

We have seen that most formats proposed so far
have important limitations: each format can repre-
sent either Bayesian networks (sometimes in con-
junction with influence diagrams) or POMDPs,
with the exception of Netica’s DNET, which claims
to admit both types of models, but it uses a
non-standard representation of POMDPs, which
makes it incompatible with existing packages for
POMDPs.

A drawback of many of these formats is that they
use a syntax inspired on C++ or Lisp, which com-
plicates the creation of parsers for them. In con-
trast, there are efficient tools for writing parsers

9www.tempastic.org/papers/CMU-CS-04-167.pdf.
10users.cecs.anu.edu.au/~ssanner/IPPC_2011/

RDDL.pdf.



that can read XML files into C++ or Java programs.
An inconvenience of XML is its verbosity, which
leads to significantly larger files than when using a
C-like syntax. This would be relevant if a user had
to encode the information—a PGM, in our case—
into an XML format manually. Fortunately, there
are many computer programs that facilitate that
task; in our case, it is possible to use OpenMarkov’s
GUI to build PGMs without caring about the syn-
tax of the format, and we expect that other software
tools may adopt this format in the future. Given
that the simplicity of parsing XML files compen-
sates for the size of the files, XML is used more
and more for defining new formats in almost every
field of computing. However, two of the three XML
formats proposed previously for PGMs can only
encode Bayesian networks with finite-state vari-
ables, the third can only encode Bayesian networks
and influence diagrams, and the only XML format
for POMDPs cannot encode factored models.

Finally, an important limitation of all these for-
mats is that they are not extensible, which implies
that they cannot encode any property that has not
been explicitly declared in its specification.

5 Conclusion

In this paper we have presented an overview of a
new XML format for encoding probabilistic graph-
ical models (PGMs). One of its advantages is
the possibility of representing several types of
models, such as Bayesian networks, Markov net-
works, influence diagrams, LIMIDs, as well as dy-
namic models: dynamic Bayesian networks, MDPs,
POMDP, and DLIMIDs, and it is easy to add new
types of models by combining the existing con-
straints or by defining new ones.

Another advantage with respect to existing
formats is the possibility of encoding user-
defined properties without modifying the specifi-
cation of the format, by placing them under the
AdditionalProperties tag. The third advantage
is its XML syntax, which permits to use the utili-
ties available for generating parsers and writers in
different languages: Java, C++, etc.

For these reasons, we believe that ProbModelXML
may be very useful as an interchange format for
PGMs. Clearly, ProbModelXML is a very rich for-
mat, which makes it difficult to implement all its
features. However, each software package can im-
plement only the subset of features required for
its purpose: it suffices to throw an error message
when the parser encounters an unknown feature.
Even our software tool OpenMarkov is currently

unable to cope with several features of the format,
but we have decided to include them in the format
to satisfy the needs of other research groups. For
this reason, we believe that the format presented
in this paper can be very useful for interchanging
several types of PGMs between different software
tools and research groups.

The tasks we have scheduled for the near future
are to improve the syntax for certain properties in
the light of the feedback we have received from
some colleagues, and to extend it to cover new
types of potentials (such as mixtures of polynomi-
als (Shenoy, 2011; Shenoy and West, 2010)), sub-
models (as in GENIE), and new types of networks,
such as object-oriented Bayesian networks (Koller
and Pfeffer, 1997) and probabilistic relational mod-
els (Jaeger, 1997; Koller and Pfeffer, 1996).

Acknowledgments

This work has been supported by grants
TIN2006-11152 and TIN2009-09158, of the Spanish
Ministry of Science and Technology, and by FON-
CICYT grant 85195. I.B. has received a predoctoral
fellowship from the Universidad Nacional de Edu-
cación a Distancia (UNED).

The reviewers of the PGM-2012 workshop have
made useful comments about this paper.

References

[Arias et al.2011] M. Arias, F. J. Dı́ez, and M. P. Pala-
cios. 2011. ProbModelXML. A format for en-
coding probabilistic graphical models. Technical
Report CISIAD-11-02, UNED, Madrid, Spain.

[Bahar et al.1993] R. I. Bahar, E. A. Frohm, C. M.
Gaona, et al. 1993. Algebraic decision dia-
grams and their applications. In Proceedings of the
IEEE/ACM International Conference on Computer-
Aided Design (ICCAD’93), pages 188–191, Santa
Clara, CA.

[Bellman1957] R. E. Bellman. 1957. Dynamic Pro-
gramming. Princeton University Press, Princeton,
NJ.

[Boutilier and Poole1996] C. Boutilier and D. Poole.
1996. Computing optimal policies for partially
observable decision processes using compact
representations. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI-
96, pages 1168–1175, Portland, OR. AAAI Press.

[Boutilier et al.1995] C. Boutilier, R. Dearden, and
M. Goldszmidt. 1995. Exploiting structure in
policy construction. In Proceedings of the 14th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI–95), pages 1104–1111, Montreal, Canada.



[Boutilier et al.2000] C. Boutilier, R. Dearden, and
M. Goldszmidt. 2000. Stochastic dynamic pro-
gramming with factored representations. Artifi-
cial Intelligence, 121:49–107.

[Dean and Kanazawa1989] T. Dean and K. Kana-
zawa. 1989. A model for reasoning about persis-
tence and causation. Computational Intelligence,
5:142–150.

[Dı́ez and Druzdzel2006] F. J. Dı́ez and M. J.
Druzdzel. 2006. Canonical probabilistic mod-
els for knowledge engineering. Technical Report
CISIAD-06-01, UNED, Madrid, Spain.

[Dı́ez and van Gerven2011] F. J. Dı́ez and M. A. J.
van Gerven. 2011. Dynamic LIMIDs. In L. E.
Sucar, J. Hoey, and E. Morales, editors, Decision
Theory Models for Applications in Artificial Intelli-
gence: Concepts and Solutions, pages 164–189. IGI
Global, Hershey, PA.

[Elvira Consortium2002] The Elvira Consortium.
2002. Elvira: An environment for creating and
using probabilistic graphical models. In J. A.
Gámez and A. Salmerón, editors, Proceedings of
the First European Workshop on Probabilistic Graph-
ical Models (PGM’02), pages 1–11, Cuenca, Spain.

[Hoey et al.1999] J. Hoey, R. St-Aubin, A. Hu, and
C. Boutilier. 1999. SPUDD: Stochastic planning
using decision diagrams. In Proceedings of the
15th Conference on Uncertainty in Artificial Intel-
ligence (UAI’99), pages 279–288, Stockholm, Swe-
den. Morgan Kaufmann, San Francisco, CA.

[Howard and Matheson1984] R. A. Howard and
J. E. Matheson. 1984. Influence diagrams. In
R. A. Howard and J. E. Matheson, editors, Read-
ings on the Principles and Applications of Deci-
sion Analysis, pages 719–762. Strategic Decisions
Group, Menlo Park, CA.

[Jaeger1997] M. Jaeger. 1997. Relational Bayesian
networks. In Proceedings of the Thirteenth Confer-
ence in Artificial Intelligence (UAI-97), pages 266–
273, San Francisco, CA. Morgan Kaufmann.

[Koller and Pfeffer1996] D. Koller and A. Pfeffer.
1996. Probabilistic frame-based systems. In Pro-
ceedings of the Fifteenth National Conference on Arti-
ficial Intelligence (AAAI-98, pages 580–587, Madi-
son, WI.

[Koller and Pfeffer1997] D. Koller and A. Pfeffer.
1997. Object-oriented Bayesian networks. In Pro-
ceedings of the Thirteenth Conference in Artificial In-
telligence (UAI-97), pages 302–313, San Francisco,
CA. Morgan Kaufmann.

[Lauritzen and Nilsson2001] S. L. Lauritzen and
D. Nilsson. 2001. Representing and solving de-
cision problems with limited information. Man-
agement Science, 47:1235–1251.

[Lauritzen and Wermuth1989] S. L. Lauritzen and
N. Wermuth. 1989. Graphical models for as-
sociations between variables, some of which are
qualitative and some quantitative. The Annals of
Statistics, 17:31–57.

[Moral et al.2001] S. Moral, R. Rumı́, and
A. Salmerón. 2001. Mixtures of truncated
exponentials in hybrid Bayesian networks. Lec-
ture Notes in Artificial Intelligence, 2143:156–167.

[Murphy2002] K. Murphy. 2002. Dynamic Bayesian
Networks: Representation, Inference and Learning.
Ph.D. thesis, Computer Science Division, Univer-
sity of California, Berkeley.

[Ong et al.2009] S. C.W. Ong, S. W. Png, D. Hsu,
and W. S. Lee. 2009. POMDPs for robotic
tasks with mixed observability. In Proceedings of
Robotics: Science and Systems V, Seattle, WA.

[Pearl1988] J. Pearl. 1988. Probabilistic Reasoning in
Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, CA.

[Poupart2005] P. Poupart. 2005. Exploiting Struc-
ture to Efficiently Solve Large Scale Partially Ob-
servable Markov Decision Processes. Ph.D. the-
sis, Dept. of Computer Science, University of
Toronto, Canada.

[Shenoy and West2010] P. P. Shenoy and J. C. West.
2010. Inference in hybrid Bayesian networks us-
ing mixtures of polynomials. International Jour-
nal of Approximate Reasoning, 52:641–657.

[Shenoy2011] P. P. Shenoy. 2011. A re-definition of
mixtures of polynomials for inference in hybrid
Bayesian networks. In W. Liu, editor, Proceed-
ings of the 11th European conference on Symbolic
and Quantitative Approaches to Reasoning with Un-
certainty (ECSQARU’11), pages 98–109. Springer,
Heidelberg.

[Spaan and Vlassis2005] M. T. J. Spaan and N. Vlas-
sis. 2005. Perseus: Randomized point-based
value iteration for POMDPs. Journal of Artificial
Intelligence Research, 24:195–220.


