
Qualitative Chain Graphs and their Use in Medicine

Martijn Lappenschaar, Arjen Hommersom, and Peter J.F. Lucas
Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands

Email: {mlappens, arjenh, peterl}@cs.ru.nl

Abstract

For modelling diseases in medicine, chain graphs are more attractive than directed graphs,
i.e., Bayesian networks, as they support representing interactions between diseases that
have no natural direction. In particular, representation by chain graphs is preferred over
Bayesian networks as they have the ability to capture equilibrium models. Using quali-
tative abstractions of probabilistic interactions is also of interest in this context, as these
would allow focusing on patterns in the interactions rather than looking at the numerical
detail, which for medical purposes is of paramount importance. So far, qualitative ab-
stractions of probabilistic interactions have been developed only for Bayesian networks in
the form of the framework of qualitative probabilistic networks. In this paper, qualitative
abstractions are developed for chain graphs with the practical purpose of using these as
constraints on the hyperspace of probability distributions. The usefulness of this approach
is explored for disease modelling.

1 Introduction

In many application fields, probabilistic graph-
ical models are seen as convenient and intuitive
formalisms to capture the probabilistic indepen-
dence information of a domain. Popular graph-
ical models include undirected graphs (UGs),
also called Markov networks, and acyclic di-
rected graphs (ADGs), also called Bayesian net-
works (Pearl, 1988). However, for both undi-
rected and directed graphs one meets unde-
sirable limitations when representing indepen-
dence information for an actual problem, such
as from medicine. Hybrid graphs, such as chain
graphs (Lauritzen and Wermuth, 1989), that
contain both directed and undirected arcs offer
an elegant generalisation of both Markov net-
works and Bayesian networks. Chain graphs
have been shown to model equilibrium sys-
tems (Lauritzen and Richardson, 2002), which
occur in many areas including biology, physics,
chemistry, and economics. For example, human
physiology contains many regulatory mecha-
nism that ensure homeostasis, i.e., a state of
equilibrium. In particular, when modelling such

processes, even when ignoring the dimension of
time, Bayesian networks are not entirely suit-
able and more expressive models are required.

However, Bayesian networks have the advan-
tage that both structure and parameters can be
assessed from either expert knowledge, data, or
both, which renders Bayesian networks white-
box rather than blackbox models. Qualitative
abstractions of Bayesian networks, qualitative
probabilistic networks (QPNs), provide a use-
ful method for exploiting qualitative constraints
in assessing probabilistic information. For the
more expressive chain graphs, it is much more
difficult to exploit human knowledge in assess-
ing their parameters, and, as a consequence,
these models are at the moment less whitebox
than Bayesian networks. The aim of the re-
search described in this paper is to come up
with ways to make chain graphs more suitable
as whitebox models in particular by the use of
qualitative probabilistic abstractions.

While it is well known that QPN theory has
its limitation when it comes to qualitative rea-
soning, the main reason why QPN theory is not
used in actual systems, QPNs may be quite use-



ful when looked at as offering constraints when
estimating a probability distribution. This, for
example, allows deriving distributions over ar-
bitrary marginals, i.e., second-order distribu-
tions (Druzdzel and van der Gaag, 1995). If an
exact probability is not required, then such dis-
tributions provide insight into the domain and
could, e.g., be used to make decisions.

In this paper, we will first argue why chain
graphs provide a good starting point for mod-
elling in medicine. To support a qualitative
modelling approach, we will give a formal ex-
tension of QPNs based on chain graphs. We
show its usefulness by semi-qualitative reason-
ing in a medical example, although it can be
applied to any field involving a model that is
represented as a chain graph.

2 Motivation from the medical field

As stated in the introduction, many physio-
logical processes within the human body can
be seen as causal feedback systems, in which
some kind of equilibrium setpoint is maintained.
In non-healthy people the equilibrium setpoint
typically differs from the healthy people, but
therapeutic interventions can reset the equilib-
rium setpoint to a state that is closer to the
healthy people. The disturbance of the equilib-
rium of one physiological process, might also al-
ter the equilibrium setpoints of other regulation
systems, which might in turn induce new patho-
physiology and decrease the patient’s prognosis
even further. In the interest of the physician,
it is important to know the qualitative dynam-
ics of such interactions, i.e., is it more likely
that a therapy for a specific disease give rise to
symptoms of another (patho)physiological pro-
cess. Some of these aspects are illustrated in
the following example, which will be used as a
running example throughout the paper.

Example 1. Figure 1 shows an abstraction of
the interaction between two diseases, i.e., dia-
betes mellitus and lipid disorder, along with its
typical blood measurements, a risk factor, i.e.,
obesity, and a possible therapy for diabetes. It
is assumed that there is feedback between the
pathophysiology of both diseases, which is al-
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Figure 1: Schematic representation of an inter-
action between diabetes mellitus and a lipid dis-
order, showing that between the diseases feed-
back exists within their pathophysiology.

most always in some kind of equilibrium. The
association between these pathophysiologies can
be measured by the fact that the symptoms are
associated, i.e., elevated glucose levels are asso-
ciated with elevated cholesterol levels.

3 Preliminaries

3.1 Chain Graphs

A chain graph (CG) is a probabilistic graphical
model that consists of labelled vertices, repre-
senting random variables, connected by directed
and undirected edges. The definitions here are
in accordance with existing literature on chain
graphs (Studený and Bouckaert, 1998).

Let G = (V,E) be a hybrid graph, where V
denotes the set of vertices and E the set of edges,
where an edge is either an arc (directed edge),
or a line (undirected edge). Let indexed let-
ters, e.g., V1 and V2, indicate vertices of a chain
graph. We denote an arc connecting two ver-
tices by ‘→’ and a line by ‘−’. Consider two
vertices V1 and V2. If V1 → V2 then V1 is a par-
ent of V2. If V1−V2 then V1 is a neighbour of V2.
The set of parents and neighbours of a vertex Vi
are denoted by pa(Vi) and ne(Vi), respectively.
The set pa(Vi) ∪ ne(Vi) is the boundary of Vi,
denoted by bd(Vi). We will denote cl(Vi) as the
closure of Vi defined by bd(Vi) ∪ {Vi}.

A path of length n in a hybrid graph G is a
sequence of distinct vertices V1, . . . , Vn+1, such
that either Vi − Vi+1 ∈ E, Vi → Vi+1 ∈ E,
or Vi ← Vi+1 ∈ E. A directed path is a path
which includes at least one arc, and where all
arcs have the same direction. A chain graph
is a hybrid graph with the restriction that no



directed cycles exist. A descending path is a
path, where there are no Vi ← Vi+1 ∈ E. A
vertex Vi is an ancestor of Vj if there exists an
descending path from Vi to Vj . The set an(Vi)
denotes the set of ancestors of vertices from Vi.

If there is a line between every pair of vertices
in a set of vertices, then this set is named com-
plete. A clique is a maximally complete subset.
Removing all the arcs from the graph leaves us
with vertices connected by lines, called chain
components; the set of all chain components is
denoted here by C. The family of a vertex Vi,
denoted by fa(Vi), is the set C ∪ pa(C) where
C ∈ C and Vi ∈ C.

Associated to a chain graph G = (V,E) is a
joint probability distribution over the set of ver-
tices P (V ) that is faithful to the chain graph G,
i.e., it includes all the independencies implied by
the graph. In this paper, we assume P (V ) to
be a strictly positive discrete factorisable distri-
bution, which are almost always faithful (Peña,
2009), defined by an outer factorisation:

P (V ) =
∏
C∈C

P (C | pa(C)) (1)

where each P (C | pa(C)) is defined by a clique-
wise factorisation:

P (C | pa(C)) = Z−1(pa(C))
∏

M∈MC

ϕM (M)

(2)
given that MC are the complete subsets in the
closure graph of C, i.e., the subgraph GC∪pa(C)

where each arc is replaced by a line and each
distinct vertex of pa(C) is also connected by
a line. The functions ϕ are non-negative real
functions, called potentials; they generalise joint
probability distributions in the sense that they
do not need to be normalised. The constant
Z(pa(C)) =

∑
C

∏
M∈MC

ϕM (M) normalises
the product to a probability distribution.

Undirected edges in chain graphs can be in-
terpreted as an equilibrium (steady-state) in
a feedback model (Lauritzen and Richardson,
2002). For example, consider again the graph in
Figure 1, where there is a feedback relationship
between lipid disorder and diabetes mellitus. In
practice, this feedback system is in a steady

(i)

Ob Th

LD DM

Ch Gl

(ii)

Ob Th

LD DM

Ch Gl

(iii)

P (Ob,Th,LD,DM,Ch,Gl) =

P (Ch | LD) · P (Gl | DM) ·
ϕ1(LD,DM,Ob) ·
ϕ2(Ob,Th,DM) ·
P (Ob) · P (Th)

Figure 2: Chain graph representation (i), clo-
sure graph of chain components (ii), and fac-
torisation (iii) of the example in Figure 1.

state, although the setpoint of the feedback sys-
tem may be changed, for example the amount
of insulin resistance. Therefore, only the re-
lationships between variables within a steady-
state are relevant, rather than the underlying
dynamic process that leads to the equilibrium.
Moreover, the underlying dynamics is very dif-
ficult to measure in vivo, hence, the parameters
of such models are difficult to elicit. Therefore,
we argue that chain graph offer an attractive ab-
straction of the underlying dynamic mechanism
for feedback systems in disease models. The
corresponding chain graph and factorisation of
Figure 1 in its steady state is shown in Figure 2.

3.2 QPNs

Qualitative probabilistic networks (QPNs) were
introduced by Wellman (1990), as a qualitative
abstraction of Bayesian networks. Conditional
probability distributions are replaced by qual-
itative knowledge in the form of signs, which
describes the relationships among variables by
the concepts of probabilistic influences and syn-
ergies. Here we briefly recall the theory in ac-
cordance with the definitions of Renooij (2001).

For clarity of exposition, we will assume that
each node A ∈ V in the discrete chain graph
model is a binary variable, which can take the
values a (A = true) and a (A = false). Further,
for notational convenience, we will sometimes
write the singleton set {A} as A, and, if X,Y ⊆
V , then we will write XY instead of X ∪ Y .
Finally, we denote X−Y for X\Y . For example
X −AB is an abbreviation of X \ {A,B}.

Then, a qualitative influence expresses how
the value of one variable influences the probabil-



ity of observing values of another variable. Let
Z denotes the set of variables pa(B) − A. We
say that A has a positive qualitative influence
on B, if P (b | a, z)− P (b | a, z) ≥ 0, regardless
of the configuration z, with a strict inequality
for at least one configuration z.

An additive synergy expresses how the in-
teraction between two variables influences the
probability of observing the values of a third
variable. Now, let Z denotes the set con-
sisting the variables pa(B) − A1A2. We say
there is a positive additive synergy of A1 and
A2 on B, if P (b | a1, a2, z) + P (b | a1, a2, z)
−P (b | a1, a2, z) − P (b | a1, a2, z) ≥ 0, regard-
less of the configuration z, with a strict inequal-
ity for at least one configuration z.

A product synergy expresses how upon obser-
vation of a common child of two vertices, ob-
serving the value of one parent vertex influences
the probability of observing a value of the other
parent. We say there is a positive product syn-
ergy of A1 and A2 with regard to the value b
on variable B, if P

(
b | a1, a2, z

)
·P
(
b | a1, a2, z

)
−P
(
b | a1, a2, z

)
·P
(
b | a1, a2, z

)
≥ 0, regardless

of the configuration z, with a strict inequality
for at least one configuration z.

Negative and zero influences and synergies are
defined analogously, by replacing ≥ with ≤ and
= respectively. If none of these cases hold, we
say that the influence or synergy is ambiguous.

4 Qualitative Chain Graphs

In this section, we will analyse influences and
synergies in the context of chain graph models.

4.1 Influences in chain graphs

The properties of signs in qualitative probabilis-
tic networks rely on the fact that signs hold in
any context, i.e., intuitively, a variable A pos-
itively influences another variable B if in any
possible context the probability of B is higher
for a compared to a. While such a context is
relatively clear in case of directed arcs, it is
more subtle for probabilistic chain graphs, in
which influences can also exist through lines.
To obtain a proper definition in such a network,
we will define influences in terms of interven-

tions (Lauritzen and Richardson, 2002) on par-
ticular variables in the chain graph.

Definition 1. The influence of A on B in a
context c ∈ V − AB, where A and B are two
vertices, is the probability P (b || a, c) − P (b ||
a, c) where P (B || A,C) is the probability of B
after an intervention on A and C.

We say that A has a positive influence on B
if the influence of A on B is ≥ 0 in any con-
text. Negative, zero and ambiguous influences
are defined similarly. Similarly to QPNs, these
influences coincide with a difference in condi-
tional probabilities if we assume that the chain
graph can be given a causal interpretation and
the chain components model equilibria, which
will be assumed in the remainder of this paper.

Lemma 1. If a chain graph G = (V,E) is gen-
erated by a causal feedback model where lines
represent equilibria (Lauritzen and Richardson,
2002), and P (B || V − B) denotes the proba-
bility distribution of B after an intervention on
all other variables, then:

P (B || V −B) = P (B | fa(B)−B)

Proof. This is a direct corollary of Equation
(18) in Lauritzen and Richardson (2002).

Given the fact that a node is independent of
its non-descendants given its boundary, i.e., for
models that factorise as given in Section 3.1, a
local Markov property holds, which yields the
following lemma.

Lemma 2. Given a chain graph G = (V,E)
and vertices A,B ∈ V such that A ∈ bd(B),
then P (B | an(B) − B) = P (B | fa(B) − B) =
P (B | bd(B)).

Proof. Follows from the local Markov property
of chain graphs (Frydenberg, 1990): Vi ⊥⊥
an(Vi)− cl(Vi) | bd(Vi).

Then, using Lemmas 1 and 2, we obtain an
expression of influences in chain graphs in terms
of conditional probabilities.

Proposition 1. Given two nodes A and B and
a context c, then the influence of A on B in
context c equals:

P (b | a, z)− P (b | a, z)



where c = z ∪ x, Z = bd(B) − A, and X =
V − ZAB.

Note that it follows that the influence of node
A on node B is a zero influence if A 6∈ bd(B)
and A ∈ an(B). Also note that the qualitative
influences generalise the QPN definitions, since
bd(B) = pa(B) for any B ∈ V if every chain
components consist of a single vertex.

4.2 Symmetry of influences

In QPNs, the qualitative signs are symmetric,
i.e., if there is some influence from a node A to
a node B, then there is an influence from B to
A with the same sign. Therefore, only a single
sign is needed for every arc in a QPN. In the
remainder, we will prove that this symmetry is
preserved for qualitative chain graphs, i.e., also
for neighbouring nodes the signs are symmetric.
First we prove a lemma that rephrases quali-
tative influences in terms of relationships be-
tween potential functions. For notational con-
venience, we do not write universally quantified
variables in potentials, e.g., ϕM (a) is shorthand
for ϕM (M − A, a), and we will write ϕM (a,X)
for ϕM (X) if A 6∈ M for any X ⊆ V . Further,
we will focus in the next lemma and theorem on
positive influences, however, the same reasoning
holds for negative and zero influences.

Lemma 3. Given a chain graph G containing
vertices A and B, with A ∈ bd(B) and B an
element of a component C, it holds that:

P (b | a, fa(B)−AB) ≥ P (b | a, fa(B)−AB)

if and only if∏
M∈MAB

ϕM (a, b)ϕM (a, b) ≥
∏

M∈MAB

ϕM (a, b)ϕM (a, b)

where MAB = {M ∈MC | {A,B} ⊆M}.

Proof. By basic probability theory, we have:

P (B | A, fa(B)−AB) =
P (C)

P (C −B)

=
P (C | pa(C))P (pa(C))∑

B

P (C | pa(C))P (pa(C))

Using Equation (2), that factorises conditional
probabilities of a component into potentials, the
left-hand side therefore equals to:

Z−1(pa(C))
( ∏

MC

ϕM (a, b)
)
P (pa(C))∑

B

Z−1(pa(C))
( ∏

MC

ϕM (a,B)
)
P (pa(C))

≥

Z−1(pa(C))
∏
MC

(
ϕM (a, b)

)
P (pa(C))∑

B

Z−1(pa(C))
( ∏

MC

ϕM (a,B)
)
P (pa(C))

Given that B ∈ C, we have B 6∈ pa(C), so the
term Z−1(pa(C))P (pa(C)) only depends on A.
By replacing this term by f(A) and multiplying
each side by the denominators, we obtain:∏

MC

ϕM (a, b)f(a)
∑
B

∏
MC

ϕM (a,B)f(a) ≥∏
MC

ϕM (a, b)f(a)
∑
B

∏
MC

ϕM (a,B)f(a)

Writing out the possible values for the summa-
tion over B, i.e., b and b, we obtain:∏

MC

ϕM (a, b)ϕM (a, b)f(a)f(a)+∏
MC

ϕM (a, b)ϕM (a, b)f(a)f(a) ≥∏
MC

ϕM (a, b)ϕM (a, b)f(a)f(a)+∏
MC

ϕM (a, b)ϕM (a, b)f(a)f(a)

Removing the factors that are the same on both
sides of the equation we get:∏

MC

ϕM (a, b)ϕM (a, b) ≥
∏
MC

ϕM (a, b)ϕM (a, b)

For all potentials not depending on both A and
B, e.g., ϕM (A,B) = ϕM (B), its corresponding
factors are also the same on both sides of the
equation, leaving us with:∏
M∈MAB

ϕM (a, b)ϕM (a, b) ≥
∏

M∈MAB

ϕM (a, b)ϕM (a, b)



ld, dm ld, dm ld, dm ld, dm

ob 16 4 2 4

ob 2 2 1 5

Table 1: Potentials over Ob, LD, and DM.

Example 2. Continuing Example 1, to evalu-
ate a (say, positive) influence of Ob on LD only
involves ϕ1 (cf. Figure 1c). Therefore, a posi-
tive influence of Ob on LD is equivalent to:

ϕ1(ob, ld,DM)ϕ1(ob, ld,DM)

≥ ϕ1(ob, ld,DM)ϕ1(ob, ld,DM)

for all values of DM. Consider, as an example,
the potential defined in Table 1. It holds for
dm → 16 ≥ 4, and for dm → 20 ≥ 8, imply-
ing a positive influence of Ob on LD. Indeed,
by computing the individual probabilities using
Table 1, we obtain:

P (ld | ob, dm) = 8/9 ≥ P (ld | ob, dm) = 2/3

P (ld | ob, dm) = 2/3 ≥ P (ld | ob, dm) = 4/9

As a result of this lemma, determining the
nature of a qualitative influence between two
vertices implies that one only has to consider
those potentials for cliques containing the two
variables that describe the influence. Hence, we
have the following result that we were aiming
for, proving the symmetry between qualitative
influences between arbitrary edges.

Theorem 1. It holds that qualitative signs
of chain graphs are symmetric, i.e., suppose
(A,B) ∈ E, then P (b | a,X)−P (b | a,X) ≥ 0 if
and only if P (a | b, Y )− P (a | b, Y ) ≥ 0, where
X = bd(B)−A and Y = bd(A)−B.

Proof. (⇒) Assume P (b | a,X)− P (b | a,X) ≥
0. Since Y ⊆ an(B)−cl(B), by the local Markov
property, we have B ⊥⊥ Y | AX, so it follows
that P (b | a,X, Y ) − P (b | a,X, Y ) ≥ 0. By
Proposition 1 and Lemma 3, it follows that∏
M∈MAB

ϕM (a, b)ϕM (a, b) ≥
∏

M∈MAB

ϕM (a, b)ϕM (a, b).

By the same reasoning, we get P (a | b, x, y) −
P (a | b, x, y) ≥ 0 and given that A ⊥⊥ X | BY ,

we conclude P (a | b, y) − P (a | b, y) ≥ 0. The
converse holds by the same steps.

4.3 Qualitative chain graphs defined

Given the properties of influences in chain
graphs, we are now in the position to define the
usual notions of qualitative probabilistic net-
works for chain graphs. We will focus on the
positive influences and synergies; the negative,
zero and ambiguous influences and synergies are
defined similarly.

Definition 2. We say that a vertex A positively
influences a vertex B, written as S+(A,B), iff
A ∈ bd(B) and

P (b | a,bd(B)−A) ≥ P (b | a,bd(B)−A)

A positive additive synergy expresses that the
joint influence of A1 and A2 is greater (or less in
case of a negative synergy) than their separate
influence on a child B. More formally, we say
that influences of A1 on B are higher in contexts
c where a2 ∈ c compared to contexts c′ where
a2 ∈ c. This can be rephrased in terms of con-
ditional probabilities following Proposition 1.

Definition 3. We say that vertices A1 and A2

express a positive additive synergy on a ver-
tex B, written as Y +({A1, A2}, B), iff A1, A2 ∈
bd(B), Z = bd(B)−A1A2, and

P (b | a1, a2, Z)− P (b | a1, a2, Z) ≥
P (b | a1, a2, Z)− P (b | a1, a2, Z)

A product synergy expresses how the value of
one cause influences the probability of the value
of another cause when observing the common
child the child. By similar reasoning for influ-
ences and additive synergies, we define product
synergies as follows.

Definition 4. We say that vertices A1 and
A2 express a negative product synergy with
regard to the value b on the vertex B, writ-
ten as X+({A1, A2}, b), iff A1, A2 ∈ bd(B),
Z = bd(B)−A1A2, and

P (b | a1, a2, Z) · P (b | a1, a2, Z) ≥
P (b | a1, a2, Z) · P (b | a1, a2, Z)



5 Experimental Results

Probabilistic inference with a QPN can be
done using sign-propagation, based on message-
passing between neighbouring nodes (Druzdzel
and Henrion, 1993), which has its limitations
in case of trade-offs. An alternative approach
is to look upon the qualitative signs as con-
straints on the joint probability distribution, as
proposed in Druzdzel and van der Gaag (1995),
where a canonical representation consisting of
(in)equalities expressing constraints on the hy-
perspace of possible joint probability distribu-
tions is used. In this approach, some of the con-
ditional probabilities or cliques may be elicited
from experts or learned from data, where for
others, only qualitative information is available.

In this paper, we take a similar approach,
where we sample the unknown potentials from
the factorisation of a given chain graph (cf.
Equations (1) and (2)). Instead of sampling the
full joint probability distributions and then es-
tablishing if the distribution is consistent with
qualitative influences, the potentials can be
sampled more efficiently by Lemma 3, as this
shows that influences impose local constraints
on the potentials. Likewise, synergies can be
stated in terms of constraints on the local po-
tentials using the following proposition.

Proposition 2. Given a chain graph G con-
taining vertices A1, A2, and B, with A1, A2 ∈
bd(B) and B an element of a component
C, it holds that a positive additive synergy
Y +({A1, A2}, B) exists if and only if

φC(a1, a2, b) + φC(a1, a2, b) ≥
φC(a1, a2, b) + φC(a1, a2, b)

and, likewise, a positive product synergy
X+({A1, A2}, b) exists if and only if

φC(a1, a2, b) · φC(a1, a2, b) ≥
φC(a1, a2, b) · φC(a1, a2, b)

with φC(a1, a2, b) =

∏
M∈MA1A2B

ϕ(a1,a2,b)∑
B

∏
M∈MA1A2B

ϕ(a1,a2,B) .

Procedure 1 sample-distribution(potentials
φknown, φunknown, qualitative constraints C)

for φM ∈ φunknown do
φM ← sample a potential for variables M
while !satisfies1(φM , C) do
φM ← resample potential for M

end while
φknown ← φknown ∪ {φM}

end for
return distribution using Equations 1 and 2

The proof of Proposition 2 follows the same
line as the proof of Lemma 3, but is omitted
here due to lack of space.

Given these properties, distributions can be
sampled that satisfy the qualitative constraints
(cf. Procedure 1). Then, using these samples,
second-order distributions of arbitrary marginal
distributions can be derived in a straightforward
manner. While typically the marginals range
over the whole [0, 1] interval, the qualitative
constraints alter the shape (e.g., the mean and
variance) of the distribution, which can then be
used to draw conclusions from the model.

Example 3. Continuing from Example 1, con-
sider the quantitative and qualitative informa-
tion available in Figure 3a. The 2nd order distri-
bution of Ch, i.e., high cholesterol, is then shown
in Figure 3b. An intervention on Th, yields the
2nd order distribution in Figure 3c, showing that
probability of Ch shifts to lower values. The
probability P (Ch | Th) < P (Ch) ≈ 0.82 within
the generated samples (n=100.000), suggesting
with high confidence that diabetic therapy is
also beneficial to reduce cholesterol levels. Note
that it has been derived without any quanti-
tative information about the chain component
containing LD and DM. An additional positive
synergy between Ob and Th on DM pushes
the distribution even more to lower probabili-
ties with an intervention on Ob, see Figure 3d.
The probability P (Ch | Ob,Th) < P (Ch) ≈
0.91, suggesting that an additional reduction of
weight in combination with diabetic therapy is
even more beneficial to reduce cholesterol levels.

1By local constraints of Lemma 3 and Proposition 2.



Ob Th

LD DM

Ch Gl

P (Ob) = 0.3 P (Th) = 0.5

P (Ch | LD) = 0.8

P (Ch | LD) = 0.3

S+(Ob,DM)

S−(Th,DM)

S+(LD,DM)

Y +({Ob,Th},DM)

(a) (b)

(c) (d)

Figure 3: Qualitative and quantitative informa-
tion (a) of Figure 2(i), and 2nd order probabil-
ity distributions of Ch (b,c,d), in the presence
of specific interventions (see Example 3).

6 Conclusions

In this paper we extended the QPN frame-
work, i.e., qualitative influences and synergies,
towards chain graphs. We analysed influences
in chain graphs and showed some of its ba-
sis properties. This allows the modelling of
qualitative representation of feedback systems,
e.g., (patho)physiological processes, since chain
graphs have the ability to model equilibria of
such systems. We have illustrated that within
the same chain graph it is feasible to combine
quantitative and qualitative information.

This is of importance for medicine, i.e., with-
out knowing the exact joint probability distri-
bution that exists between diseases, we are still
able to draw qualitative conclusions on the dy-
namics that exist within a disease model. Start-
ing from quantitative information, e.g., condi-
tional probabilities relating symptoms and dis-
eases, adding qualitative information, can be
efficiently done by putting specific constraints
on the potentials of local cliques in the chain
graph. Such information often comes in terms

of so-called odds ratios, which easily translates
to qualitative influence and synergies.

In future work we aim to apply this formal-
ism in a study on diabetes and cardiovascular
comorbidities involving multiple feedback sys-
tems. Furthermore, the sampling of potentials
may be improved by exploiting Monte Carlo
methods which take into account bounds on the
hyperspace (e.g. based on (Smith, 1984)).
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