PGM 2012
The Sixth European Workshop on
Probabilistic Graphical Models
19-21 September 2012
Granada, Spain
Alessandro Antonucci, Giorgio Corani and Sandra Gabaglio | Active Learning by the Naive Credal Classifier | |||||||||||
Manuel Arias, Francisco Javier Díez, Miguel Ángel Palacios-Alonso and Íñigo Bermejo | ProbModelXML. A format for encoding probabilistic graphical models | |||||||||||
Victor Bellon, Jesús Cerquides and Ivo Grosse | Gaussian Join Tree classifiers with applications to mass spectra classification | |||||||||||
Íñigo Bermejo, Jesús Oliva, Francisco Javier Díez and Manuel Arias | Interactive learning of Bayesian Networks with OpenMarkov | |||||||||||
Giorgos Borboudakis and Ioannis Tsamardinos | Tools and Algorithms for Causally Interpreting Directed Edges in Maximal Ancestral Graphs | |||||||||||
Rafael Cabañas de Paz, Manuel Gómez-Olmedo and Andrés Cano | Approximate Inference in Influence Diagrams using Binary Trees | |||||||||||
Suming Chen, Arthur Choi and Adnan Darwiche | The Same-Decision Probability: A New Tool for Decision Making | |||||||||||
Barry Cobb and Prakash Shenoy | Piecewise Linear Approximations of Nonlinear Deterministic Conditionals in Hybrid Bayesian Networks | |||||||||||
Barry Cobb, Rafael Rumi and Antonio Salmeron | Approximating the Distribution of a Sum of Log-normal Random Variables | |||||||||||
Giorgio Corani, Cristina Magli, Alessandro Giusti, Luca Gianaroli and Luca Gambardella | A Bayesian Network model for predicting the outcome of in vitro fertilization | |||||||||||
Francisco Javier Díez, Manuel Luque and Caroline König | Decision analysis networks | |||||||||||
Ralf Eggeling, Pierre-Yves Bourguignon, André Gohr and Ivo Grosse | Gibbs sampling for parsimonious Markov models with latent variables | |||||||||||
Sander Evers and Peter Lucas | A framework for development, teaching and deployment of inference algorithms | |||||||||||
M. Julia Flores, Jose A. Gamez and Ana M. Martínez | Meta-prediction of semi-naive Bayesian network classifiers based on dataset complexity characterization | |||||||||||
Perry Groot and Peter Lucas | Gaussian Process Regression with Censored Data Using Expectation Propagation | |||||||||||
Alain Hauser and Peter Bühlmann | Two Optimal Strategies for Active Learning of Causal Models from Interventions | |||||||||||
Maarten van der Heijden and Peter Lucas | Probabilistic reasoning with temporal indeterminacy | |||||||||||
Pablo Hernandez-Leal, Felipe Orihuela-Espina, L. Enrique Sucar and Eduardo F. Morales | Hybrid Binary-Chain Multi-label Classifiers | |||||||||||
Gabor Hullam and Peter Antal | Estimation of effect size posterior using model averaging over Bayesian network structures and parameters | |||||||||||
Sergey Kirshner | Latent Tree Copulas | |||||||||||
Helge Langseth, Thomas D. Nielsen and Antonio Salmeron | Learning Mixtures of Truncated Basis Functions from Data | |||||||||||
Helge Langseth, Thomas D. Nielsen, Rafael Rumí | Inference in hybrid Bayesian networks with Mixtures of Truncated Basis Functions | |||||||||||
Martijn Lappenschaar, Arjen Hommersom and Peter Lucas | Qualitative Chain Graphs and their Use in Medicine | |||||||||||
Chao Li and Maomi Ueno | A Depth-First Search Algorithm for Optimal Triangulation of Bayesian Network | |||||||||||
Václav Lín | Decision-Theoretic Troubleshooting: Hardness of Approximation | |||||||||||
Tengfei Liu, Nevin L. Zhang, Kin Man Poon, Hua Liu and Yi Wang | A Novel LTM-based Method for Multidimensional Clustering | |||||||||||
Pedro Luis López-Cruz, Concha Bielza and Pedro Larrañaga | Learning mixtures of polynomials from data using B-spline interpolation | |||||||||||
Anna Lupinska-Dubicka and Marek Druzdzel | A Comparison of Popular Fertility Awareness Methods to a DBN Model of the Woman's Monthy Cycle | |||||||||||
Anders Madsen and Cory Butz | On the Importance of Elimination Heuristics in Lazy Propagation | |||||||||||
Brandon Malone and Changhe Yuan | A Bounded Error, Anytime, Parallel Algorithm for Exact Bayesian Network Structure Learning | |||||||||||
Andrés R. Masegosa and Serafín Moral | An interactive approach for cleaning noisy observations in Bayesian networks with the help of an expert | |||||||||||
Jose M. Peña | Learning AMP Chain Graphs under Faithfulness | |||||||||||
Cora B. Pérez-Ariza, Ann E. Nicholson and M. Julia Flores | Prediction of Coffee Rust Disease Using Bayesian Networks | |||||||||||
Silja Renooij | Generalised Co-variation for Sensitivity Analysis in Bayesian Networks | |||||||||||
Rafael Rumi, Antonio Salmerón and Prakash P. Shenoy | Tractable inference in hybrid Bayesian networks with deterministic conditionals using re-approximations | |||||||||||
François Schnitzler, Pierre Geurts and Louis Wehenkel | Mixtures of Bagged Markov Tree Ensembles | |||||||||||
Nathaniel Shiers and Jim Q. Smith | Graphical inequality diagnostics for phylogenetic trees | |||||||||||
Dag Sonntag and Jose M. Peña | Learning Multivariate Regression Chain Graphs under Faithfulness | |||||||||||
Milan Studeny | Integer linear programming approach to learning Bayesian network structure | |||||||||||
Joe Suzuki | The Bayesian Chow-Liu Algorithm | |||||||||||
Inma Tur and Robert Castelo | Learning high-dimensional mixed graphical models with missing values | |||||||||||
Maomi Ueno and Masaki Uto | Non-Informative Dirichlet Score for learning Bayesian networks | |||||||||||
Jimmy Vandel, Simon De Givry and Brigitte Mangin | New Local Move Operators for Bayesian Network Structure Learning | |||||||||||
Kristin Vogel, Carsten Riggelsen, Bruno Merz, Heidi Kreibich and Frank Scherbaum | Flood Damage and Influencing Factors: A Bayesian Network Perspective | |||||||||||
Jirka Vomlel and Petr Tichavsky | Computationally efficient probabilistic inference with noisy threshold models based on a CP tensor decomposition | |||||||||||
Yang Xiang | Bayesian Network Inference With NIN-AND Tree Models |
The workshop is hosted by the Department of Computer Science and Artificial Intelligence, Granada University, Spain.